Ma Wenzhe, Lai Luhua, Ouyang Qi, Tang Chao
Center for Theoretical Biology, Peking University, Beijing, China.
Mol Syst Biol. 2006;2:70. doi: 10.1038/msb4100111. Epub 2006 Dec 12.
Biomolecular networks have to perform their functions robustly. A robust function may have preferences in the topological structures of the underlying network. We carried out an exhaustive computational analysis on network topologies in relation to a patterning function in Drosophila embryogenesis. We found that whereas the vast majority of topologies can either not perform the required function or only do so very fragilely, a small fraction of topologies emerges as particularly robust for the function. The topology adopted by Drosophila, that of the segment polarity network, is a top ranking one among all topologies with no direct autoregulation. Furthermore, we found that all robust topologies are modular-each being a combination of three kinds of modules. These modules can be traced back to three subfunctions of the patterning function, and their combinations provide a combinatorial variability for the robust topologies. Our results suggest that the requirement of functional robustness drastically reduces the choices of viable topology to a limited set of modular combinations among which nature optimizes its choice under evolutionary and other biological constraints.
生物分子网络必须稳健地执行其功能。稳健的功能可能对基础网络的拓扑结构有偏好。我们对果蝇胚胎发育中与一种模式形成功能相关的网络拓扑进行了详尽的计算分析。我们发现,绝大多数拓扑结构要么无法执行所需功能,要么只能非常脆弱地执行,而一小部分拓扑结构对于该功能而言显得特别稳健。果蝇所采用的拓扑结构,即节段极性网络的拓扑结构,在所有无直接自调控的拓扑结构中排名靠前。此外,我们发现所有稳健的拓扑结构都是模块化的——每个都是三种模块的组合。这些模块可以追溯到模式形成功能的三个子功能,它们的组合为稳健的拓扑结构提供了组合变异性。我们的结果表明,功能稳健性的要求将可行拓扑结构的选择大幅减少到一组有限的模块化组合,在进化和其他生物学限制下,自然会在这些组合中优化其选择。