Suppr超能文献

强耦合微盘-量子点系统的线性和非线性光学光谱

Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system.

作者信息

Srinivasan Kartik, Painter Oskar

机构信息

Center for the Physics of Information, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

Nature. 2007 Dec 6;450(7171):862-5. doi: 10.1038/nature06274.

Abstract

Cavity quantum electrodynamics, the study of coherent quantum interactions between the electromagnetic field and matter inside a resonator, has received attention as both a test bed for ideas in quantum mechanics and a building block for applications in the field of quantum information processing. The canonical experimental system studied in the optical domain is a single alkali atom coupled to a high-finesse Fabry-Perot cavity. Progress made in this system has recently been complemented by research involving trapped ions, chip-based microtoroid cavities, integrated microcavity-atom-chips, nanocrystalline quantum dots coupled to microsphere cavities, and semiconductor quantum dots embedded in micropillars, photonic crystals and microdisks. The last system has been of particular interest owing to its relative simplicity and scalability. Here we use a fibre taper waveguide to perform direct optical spectroscopy of a system consisting of a quantum dot embedded in a microdisk. In contrast to earlier work with semiconductor systems, which has focused on photoluminescence measurements, we excite the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fibre coupling method also allows us to examine the system's steady-state nonlinear properties, where we see a saturation of the cavity-quantum dot response for less than one intracavity photon. The excitation of the cavity-quantum dot system through a fibre optic waveguide is central to applications such as high-efficiency single photon sources, and to more fundamental studies of the quantum character of the system.

摘要

腔量子电动力学研究的是谐振腔内电磁场与物质之间的相干量子相互作用,它作为量子力学思想的试验平台以及量子信息处理领域应用的构建模块,受到了广泛关注。在光学领域研究的典型实验系统是一个与高精细度法布里 - 珀罗腔耦合的单碱原子。最近,该系统所取得的进展得到了涉及捕获离子、基于芯片的微环腔、集成微腔 - 原子芯片、耦合到微球腔的纳米晶体量子点以及嵌入微柱、光子晶体和微盘中的半导体量子点等研究的补充。最后一个系统因其相对简单和可扩展性而备受关注。在这里,我们使用光纤锥波导对由嵌入微盘中的量子点组成的系统进行直接光谱测量。与早期专注于光致发光测量的半导体系统研究不同,我们通过光子(光)通道而非激子(物质)通道来激发该系统。通过观察腔的透射和反射信号中的真空拉比分裂,证明了强耦合,即相干量子相互作用的状态。光纤耦合方法还使我们能够研究系统的稳态非线性特性,在此我们观察到对于腔内光子数小于一个时,腔 - 量子点响应的饱和现象。通过光纤波导对腔 - 量子点系统进行激发对于诸如高效单光子源等应用以及对该系统量子特性的更基础研究至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验