Yan Jia, Zhang Zhifang, Zhang Ningning, Huang Qiang, Zhan Yan, Jiang Zuimin, Zhong Zhenyang
State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200438, China.
Wide Bandgap Semiconductor Technology Disciplines State Key Laboratory, School of Microelectronics, Xidian University, Xi'an 710071, China.
Nanomaterials (Basel). 2023 Aug 12;13(16):2323. doi: 10.3390/nano13162323.
Semiconductor quantum dots (QDs)/microdisks promise a unique system for comprehensive studies on cavity quantum electrodynamics and great potential for on-chip integrated light sources. Here, we report on a strategy for precisely site-controlled Ge QDs in SiGe microdisks via self-assembly growth of QDs on a micropillar with deterministic pits and subsequent etching. The competitive growth of QDs in pits and at the periphery of the micropillar is disclosed. By adjusting the growth temperature and Ge deposition, as well as the pit profiles, QDs can exclusively grow in pits that are exactly located at the field antinodes of the corresponding cavity mode of the microdisk. The inherent mechanism of the mandatory addressability of QDs is revealed in terms of growth kinetics based on the non-uniform surface chemical potential around the top of the micropillar with pits. Our results demonstrate a promising approach to scalable and deterministic QDs/microdisks with strong light-matter interaction desired for fundamental research and technological applications.
半导体量子点(QDs)/微盘有望成为用于腔量子电动力学综合研究的独特系统,并具有成为片上集成光源的巨大潜力。在此,我们报道了一种通过在具有确定性凹坑的微柱上进行量子点的自组装生长并随后进行蚀刻,在SiGe微盘中精确地进行位点控制的Ge量子点的策略。揭示了量子点在凹坑中和微柱周边的竞争生长情况。通过调节生长温度和Ge沉积以及凹坑轮廓,量子点能够专门生长在恰好位于微盘相应腔模场波腹处的凹坑中。基于具有凹坑的微柱顶部周围不均匀的表面化学势,从生长动力学的角度揭示了量子点强制可寻址性的内在机制。我们的结果展示了一种有前景的方法,可用于制备具有强光与物质相互作用的可扩展且确定性的量子点/微盘,这对于基础研究和技术应用而言是非常理想的。