Werner Andrea K, Sparkes Imogen A, Romeis Tina, Witte Claus-Peter
Freie Universität Berlin, Institut für Biologie, Abteilung Biochemie der Pflanzen, 14195 Berlin, Germany.
Plant Physiol. 2008 Feb;146(2):418-30. doi: 10.1104/pp.107.110809. Epub 2007 Dec 7.
Allantoate amidohydrolases (AAHs) hydrolize the ureide allantoate to ureidoglycolate, CO(2), and two molecules of ammonium. Allantoate degradation is required to recycle purine-ring nitrogen in all plants. Tropical legumes additionally transport fixed nitrogen via allantoin and allantoate into the shoot, where it serves as a general nitrogen source. AAHs from Arabidopsis (Arabidopsis thaliana; AtAAH) and from soybean (Glycine max; GmAAH) were cloned, expressed in planta as StrepII-tagged variants, and highly purified from leaf extracts. Both proteins form homodimers and release 2 mol ammonium/mol allantoate. Therefore, they can truly be classified as AAHs. The kinetic constants determined and the half-maximal activation by 2 to 3 microm manganese are consistent with allantoate being the in vivo substrate of manganese-loaded AAHs. The enzymes were strongly inhibited by micromolar concentrations of fluoride as well as by borate, and by millimolar concentrations of L-asparagine and L-aspartate but not D-asparagine. L-Asparagine likely functions as competitive inhibitor. An Ataah T-DNA mutant, unable to grow on allantoin as sole nitrogen source, is rescued by the expression of StrepII-tagged variants of AtAAH and GmAAH, demonstrating that both proteins are functional in vivo. Similarly, an allantoinase (aln) mutant is rescued by a tagged AtAln variant. Fluorescent fusion proteins of allantoinase and both AAHs localize to the endoplasmic reticulum after transient expression and in transgenic plants. These findings demonstrate that after the generation of allantoin in the peroxisome, plant purine degradation continues in the endoplasmic reticulum.
尿囊酸酰胺水解酶(AAHs)将脲基尿囊酸水解为脲基乙醇酸、二氧化碳和两分子铵。所有植物都需要进行尿囊酸降解以循环利用嘌呤环中的氮。热带豆科植物还通过尿囊素和尿囊酸将固定态氮运输到地上部,在那里它作为一种通用的氮源。已克隆了拟南芥(Arabidopsis thaliana;AtAAH)和大豆(Glycine max;GmAAH)的AAHs,并在植物中表达为带有链霉亲和素II标签的变体,然后从叶片提取物中进行了高度纯化。这两种蛋白质均形成同型二聚体,且每摩尔尿囊酸释放2摩尔铵。因此,它们可真正归类为AAHs。所测定的动力学常数以及2至3微摩尔锰的半最大激活作用与尿囊酸是锰负载型AAHs的体内底物一致。这些酶受到微摩尔浓度的氟化物以及硼酸盐、毫摩尔浓度的L-天冬酰胺和L-天冬氨酸的强烈抑制,但不受D-天冬酰胺的抑制。L-天冬酰胺可能起竞争性抑制剂的作用。一个无法以尿囊素作为唯一氮源生长的At aah T-DNA突变体,通过表达AtAAH和GmAAH的带有链霉亲和素II标签的变体得以拯救,这表明这两种蛋白质在体内都具有功能。同样,一个尿囊素酶(aln)突变体通过一个带有标签的AtAln变体得以拯救。尿囊素酶和两种AAHs的荧光融合蛋白在瞬时表达后以及在转基因植物中定位于内质网。这些发现表明,在过氧化物酶体中产生尿囊素后,植物嘌呤降解在内质网中继续进行。