Suppr超能文献

用于预测蛋白质特征的隐马尔可夫模型

Hidden Markov Models for prediction of protein features.

作者信息

Bystroff Christopher, Krogh Anders

机构信息

Department of Biology, Rensselaer Polytechnic Institute, Troy, NY, USA.

出版信息

Methods Mol Biol. 2008;413:173-98. doi: 10.1007/978-1-59745-574-9_7.

Abstract

Hidden Markov Models (HMMs) are an extremely versatile statistical representation that can be used to model any set of one-dimensional discrete symbol data. HMMs can model protein sequences in many ways, depending on what features of the protein are represented by the Markov states. For protein structure prediction, states have been chosen to represent either homologous sequence positions, local or secondary structure types, or transmembrane locality. The resulting models can be used to predict common ancestry, secondary or local structure, or membrane topology by applying one of the two standard algorithms for comparing a sequence to a model. In this chapter, we review those algorithms and discuss how HMMs have been constructed and refined for the purpose of protein structure prediction.

摘要

隐马尔可夫模型(HMMs)是一种极为通用的统计表示法,可用于对任何一维离散符号数据集合进行建模。根据马尔可夫状态所代表的蛋白质特征,HMMs可以通过多种方式对蛋白质序列进行建模。对于蛋白质结构预测,已选择状态来代表同源序列位置、局部或二级结构类型,或跨膜位置。通过应用将序列与模型进行比较的两种标准算法之一,所得模型可用于预测共同祖先、二级或局部结构,或膜拓扑结构。在本章中,我们将回顾这些算法,并讨论为蛋白质结构预测目的而构建和完善HMMs的方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验