Suppr超能文献

利用隐马尔可夫模型预测蛋白质二级结构。

Prediction of protein secondary structure by the hidden Markov model.

作者信息

Asai K, Hayamizu S, Handa K

机构信息

Electrotechnical Laboratory, Ibaraki, Japan.

出版信息

Comput Appl Biosci. 1993 Apr;9(2):141-6. doi: 10.1093/bioinformatics/9.2.141.

Abstract

The purpose of this paper is to introduce a new method for analyzing the amino acid sequences of proteins using the hidden Markov model (HMM), which is a type of stochastic model. Secondary structures such as helix, sheet and turn are learned by HMMs, and these HMMs are applied to new sequences whose structures are unknown. The output probabilities from the HMMs are used to predict the secondary structures of the sequences. The authors tested this prediction system on approximately 100 sequences from a public database (Brookhaven PDB). Although the implementation is 'without grammar' (no rule for the appearance patterns of secondary structure) the result was reasonable.

摘要

本文的目的是介绍一种使用隐马尔可夫模型(HMM)分析蛋白质氨基酸序列的新方法,隐马尔可夫模型是一种随机模型。螺旋、片层和转角等二级结构由隐马尔可夫模型学习得到,这些隐马尔可夫模型被应用于结构未知的新序列。隐马尔可夫模型的输出概率用于预测序列的二级结构。作者在来自公共数据库(布鲁克海文蛋白质数据银行)的约100个序列上测试了这个预测系统。尽管该实现是“无语法的”(没有二级结构出现模式的规则),但结果是合理的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验