Farr B R, Schachter R D
Section on Medical Informatics, Stanford University.
Proc Annu Symp Comput Appl Med Care. 1991:1018-24.
The recommendations of computer-based decision-support systems depend on the preferences of an expert on which the model is based. Often, these preferences are represented only implicitly, rather than explicitly, in the system. Decision-theoretic preference models that explicitly represent the preferences of the decision maker provide numerous advantages for decision-support systems. In this paper, we describe these advantages. The creation and refinement of decision-theoretic preference models, however, remains a difficult task. We describe an accurate and efficient method for determining the preferences of domain experts and for refining the model that captures those preferences. In this preference-assessment method, we simulate decisions common in the expert's area. We then infer the preferences of the expert from the choices that she makes on the simulated decisions, and use the preference information to refine the model automatically.
基于计算机的决策支持系统的建议取决于模型所基于的专家的偏好。通常,这些偏好在系统中只是隐含地而非明确地表示出来。明确表示决策者偏好的决策理论偏好模型为决策支持系统提供了诸多优势。在本文中,我们描述了这些优势。然而,决策理论偏好模型的创建和完善仍然是一项艰巨的任务。我们描述了一种准确且高效的方法,用于确定领域专家的偏好以及完善捕捉这些偏好的模型。在这种偏好评估方法中,我们模拟专家领域中常见的决策。然后,我们从专家在模拟决策中所做的选择推断出其偏好,并利用这些偏好信息自动完善模型。