Suppr超能文献

谷氨酸受体1(GluR1)在兴奋性突触处连接结构可塑性和功能可塑性。

GluR1 links structural and functional plasticity at excitatory synapses.

作者信息

Kopec Charles D, Real Eleonore, Kessels Helmut W, Malinow Roberto

机构信息

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA.

出版信息

J Neurosci. 2007 Dec 12;27(50):13706-18. doi: 10.1523/JNEUROSCI.3503-07.2007.

Abstract

Long-term potentiation (LTP), a cellular model of learning and memory, produces both an enhancement of synaptic function and an increase in the size of the associated dendritic spine. Synaptic insertion of AMPA receptors is known to play an important role in mediating the increase in synaptic strength during LTP, whereas the role of AMPA receptor trafficking in structural changes remains unexplored. Here, we examine how the cell maintains the correlation between spine size and synapse strength during LTP. We found that cells exploit an elegant solution by linking both processes to a single molecule: the AMPA-type glutamate receptor subunit 1 (GluR1). Synaptic insertion of GluR1 is required to permit a stable increase in spine size, both in hippocampal slice cultures and in vivo. Synaptic insertion of GluR1 is not sufficient to drive structural plasticity. Although crucial to the expression of LTP, the ion channel function of GluR1 is not required for the LTP-driven spine size enhancement. Remarkably, a recombinant cytosolic C-terminal fragment (C-tail) of GluR1 is driven to the postsynaptic density after an LTP stimulus, and the synaptic incorporation of this isolated GluR1 C-tail is sufficient to permit spine enlargement even when postsynaptic exocytosis of endogenous GluR1 is blocked. We conclude that during plasticity, synaptic insertion of GluR1 has two functions: the established role of increasing synaptic strength via its ligand-gated ion channel, and a novel role through the structurally stabilizing effect of its C terminus that permits an increase in spine size.

摘要

长时程增强(LTP)是学习和记忆的一种细胞模型,它既能增强突触功能,又能增大相关树突棘的尺寸。已知AMPA受体的突触插入在介导LTP期间突触强度增加中起重要作用,而AMPA受体转运在结构变化中的作用仍未得到探索。在这里,我们研究细胞在LTP期间如何维持树突棘大小与突触强度之间的相关性。我们发现细胞通过将这两个过程与单个分子联系起来,找到了一个巧妙的解决方案:AMPA型谷氨酸受体亚基1(GluR1)。无论是在海马脑片培养物中还是在体内,GluR1的突触插入都是树突棘大小稳定增加所必需的。GluR1的突触插入不足以驱动结构可塑性。虽然对LTP的表达至关重要,但LTP驱动的树突棘大小增强并不需要GluR1的离子通道功能。值得注意的是,LTP刺激后,GluR1的重组胞质C末端片段(C尾)被驱动到突触后致密区,即使内源性GluR1的突触后胞吐作用被阻断,这种分离的GluR1 C尾的突触掺入也足以使树突棘增大。我们得出结论,在可塑性过程中,GluR1的突触插入有两个功能:通过其配体门控离子通道增加突触强度的既定作用,以及通过其C末端的结构稳定作用允许树突棘大小增加的新作用。

相似文献

1
GluR1 links structural and functional plasticity at excitatory synapses.
J Neurosci. 2007 Dec 12;27(50):13706-18. doi: 10.1523/JNEUROSCI.3503-07.2007.
3
Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice.
J Physiol. 2003 Oct 1;552(Pt 1):35-45. doi: 10.1113/jphysiol.2003.045575. Epub 2003 Jul 23.
4
6
AMPA receptor incorporation into synapses during LTP: the role of lateral movement and exocytosis.
Neuron. 2009 Nov 12;64(3):381-90. doi: 10.1016/j.neuron.2009.08.035.
7
SAP97 directs NMDA receptor spine targeting and synaptic plasticity.
J Physiol. 2011 Sep 15;589(Pt 18):4491-510. doi: 10.1113/jphysiol.2011.215566. Epub 2011 Jul 18.
9
Experience strengthening transmission by driving AMPA receptors into synapses.
Science. 2003 Mar 7;299(5612):1585-8. doi: 10.1126/science.1079886.
10
Control of Homeostatic Synaptic Plasticity by AKAP-Anchored Kinase and Phosphatase Regulation of Ca-Permeable AMPA Receptors.
J Neurosci. 2018 Mar 14;38(11):2863-2876. doi: 10.1523/JNEUROSCI.2362-17.2018. Epub 2018 Feb 13.

引用本文的文献

2
Sleep Deprivation Alters Hippocampal Dendritic Spines in a Contextual Fear Memory Engram.
bioRxiv. 2025 Mar 5:2025.03.02.641043. doi: 10.1101/2025.03.02.641043.
3
Interplay of epilepsy and long-term potentiation: implications for memory.
Front Neurosci. 2025 Jan 10;18:1451740. doi: 10.3389/fnins.2024.1451740. eCollection 2024.
5
A pipeline for STED super-resolution imaging and Imaris analysis of nanoscale synapse organization in mouse cortical brain slices.
STAR Protoc. 2023 Dec 15;4(4):102707. doi: 10.1016/j.xpro.2023.102707. Epub 2023 Nov 9.
6
Regulation of dendritic spines in the amygdala following sleep deprivation.
Front Sleep. 2023;2. doi: 10.3389/frsle.2023.1145203. Epub 2023 Apr 3.
8
Circadian protein TIMELESS regulates synaptic function and memory by modulating cAMP signaling.
Cell Rep. 2023 Apr 25;42(4):112375. doi: 10.1016/j.celrep.2023.112375. Epub 2023 Apr 11.
9
p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer's disease.
Transl Neurodegener. 2023 Jan 9;12(1):1. doi: 10.1186/s40035-022-00334-w.
10
The Science of Learning and Art of Education in Cardiology Fellowship.
Methodist Debakey Cardiovasc J. 2022 Jun 3;18(3):4-13. doi: 10.14797/mdcvj.1088. eCollection 2022.

本文引用的文献

1
Conservation of glutamate receptor 2-containing AMPA receptors during long-term potentiation.
J Neurosci. 2007 Apr 25;27(17):4598-602. doi: 10.1523/JNEUROSCI.0325-07.2007.
2
Plasticity-induced growth of dendritic spines by exocytic trafficking from recycling endosomes.
Neuron. 2006 Dec 7;52(5):817-30. doi: 10.1016/j.neuron.2006.09.040.
3
Two mutations preventing PDZ-protein interactions of GluR1 have opposite effects on synaptic plasticity.
Learn Mem. 2006 Sep-Oct;13(5):562-5. doi: 10.1101/lm.253506. Epub 2006 Sep 15.
4
Instructive effect of visual experience in mouse visual cortex.
Neuron. 2006 Aug 3;51(3):339-49. doi: 10.1016/j.neuron.2006.06.026.
6
Dual role of the exocyst in AMPA receptor targeting and insertion into the postsynaptic membrane.
EMBO J. 2006 Apr 19;25(8):1623-34. doi: 10.1038/sj.emboj.7601065. Epub 2006 Apr 6.
7
Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation.
Nat Neurosci. 2006 May;9(5):602-4. doi: 10.1038/nn1678. Epub 2006 Apr 2.
8
Pathway-specific trafficking of native AMPARs by in vivo experience.
Neuron. 2006 Mar 2;49(5):663-70. doi: 10.1016/j.neuron.2006.01.019.
9
Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation.
J Neurosci. 2006 Feb 15;26(7):2000-9. doi: 10.1523/JNEUROSCI.3918-05.2006.
10
Spatial organization of cofilin in dendritic spines.
Neuroscience. 2006;138(2):447-56. doi: 10.1016/j.neuroscience.2005.11.025. Epub 2006 Jan 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验