Zhang Y Z, Su B, Ramakrishna S, Lim C T
Department of Oral & Dental Science, University of Bristol, Lower Maudlin Street, Bristol BS1 2LY, United Kingdom.
Biomacromolecules. 2008 Jan;9(1):136-41. doi: 10.1021/bm701130e. Epub 2007 Dec 14.
Conversion of natural biopolymer chitosan into nanofibers through electrospinning has significant usefulness in various biomedical applications, in particular, for constructing a biomimetic and bioactive nanofibrous artificial extracellular matrix for engineering various tissues. Here, we show that introduction of an ultrahigh-molecular-weight poly(ethylene oxide) (UHMWPEO) into aqueous chitosan solutions remarkably enhances the formation of chitosan nanofibrous structure and leads to much lower loading of the water soluble fiber-forming aiding agent of PEO down to 5 wt % as compared to previous high PEO loadings in the electrospun chitosan nanofibers. The excellent electrospinnability of the current formulation renders electrospinning of natural biopolymer chitosan a robust process for large-scale production of practically applicable nanofibrous structures.
通过静电纺丝将天然生物聚合物壳聚糖转化为纳米纤维在各种生物医学应用中具有重要用途,特别是用于构建用于工程化各种组织的仿生和生物活性纳米纤维人工细胞外基质。在此,我们表明,将超高分子量聚环氧乙烷(UHMWPEO)引入壳聚糖水溶液中可显著增强壳聚糖纳米纤维结构的形成,并导致水溶性成纤助剂PEO的负载量比以前在电纺壳聚糖纳米纤维中的高PEO负载量低得多,降至5 wt%。当前配方出色的可静电纺丝性使天然生物聚合物壳聚糖的静电纺丝成为大规模生产实际适用的纳米纤维结构的稳健工艺。
Biomacromolecules. 2008-1
Biomacromolecules. 2008-3
Macromol Biosci. 2009-9-9
Biomacromolecules. 2008-10
Biomaterials. 2005-11
Nanomaterials (Basel). 2024-8-2
Front Bioeng Biotechnol. 2020-8-18
Nanomaterials (Basel). 2020-7-31
Int J Mol Sci. 2018-1-30
Materials (Basel). 2016-1-26
Carbohydr Polym. 2013-10-30