文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用纳米纤维的癌症治疗:综述

Cancer Treatment Using Nanofibers: A Review.

作者信息

Khan Muhammad Qamar, Alvi Muhammad Abbas, Nawaz Hafiza Hifza, Umar Muhammad

机构信息

Department of Textile Engineering, School of Engineering and Technology, National Textile University, Faisalabad 37610, Pakistan.

Department of Materials, The University of Manchester, Manchester M13 9PL, UK.

出版信息

Nanomaterials (Basel). 2024 Aug 2;14(15):1305. doi: 10.3390/nano14151305.


DOI:10.3390/nano14151305
PMID:39120410
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11314412/
Abstract

Currently, the number of patients with cancer is expanding consistently because of a low quality of life. For this reason, the therapies used to treat cancer have received a lot of consideration from specialists. Numerous anticancer medications have been utilized to treat patients with cancer. However, the immediate utilization of anticancer medicines leads to unpleasant side effects for patients and there are many restrictions to applying these treatments. A number of polymers like cellulose, chitosan, Polyvinyl Alcohol (PVA), Polyacrylonitrile (PAN), peptides and Poly (hydroxy alkanoate) have good properties for the treatment of cancer, but the nanofibers-based target and controlled drug delivery system produced by the co-axial electrospinning technique have extraordinary properties like favorable mechanical characteristics, an excellent release profile, a high surface area, and a high sponginess and are harmless, bio-renewable, biofriendly, highly degradable, and can be produced very conveniently on an industrial scale. Thus, nanofibers produced through coaxial electrospinning can be designed to target specific cancer cells or tissues. By modifying the composition and properties of the nanofibers, researchers can control the release kinetics of the therapeutic agent and enhance its accumulation at the tumor site while minimizing systemic toxicity. The core-shell structure of coaxial electrospun nanofibers allows for a controlled and sustained release of therapeutic agents over time. This controlled release profile can improve the efficacy of cancer treatment by maintaining therapeutic drug concentrations within the tumor microenvironment for an extended period.

摘要

目前,由于生活质量低下,癌症患者的数量在持续增加。因此,用于治疗癌症的疗法受到了专家们的广泛关注。许多抗癌药物已被用于治疗癌症患者。然而,直接使用抗癌药物会给患者带来不良副作用,并且这些治疗方法的应用存在诸多限制。一些聚合物,如纤维素、壳聚糖、聚乙烯醇(PVA)、聚丙烯腈(PAN)、肽和聚羟基脂肪酸酯,具有良好的癌症治疗特性,但通过同轴静电纺丝技术生产的基于纳米纤维的靶向和控释药物递送系统具有非凡的特性,如良好的机械性能、优异的释放曲线、高表面积、高海绵性,并且无害、生物可再生、生物友好、高度可降解,并且可以在工业规模上非常方便地生产。因此,通过同轴静电纺丝生产的纳米纤维可以设计用于靶向特定的癌细胞或组织。通过改变纳米纤维的组成和性质,研究人员可以控制治疗剂的释放动力学,并增强其在肿瘤部位的积累,同时将全身毒性降至最低。同轴静电纺丝纳米纤维的核壳结构允许治疗剂随时间进行可控和持续的释放。这种控释曲线可以通过在肿瘤微环境中长时间维持治疗药物浓度来提高癌症治疗的疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/70a050840fbf/nanomaterials-14-01305-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/efeb8bd69edb/nanomaterials-14-01305-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/a8307115fb79/nanomaterials-14-01305-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/4d1ac13bba99/nanomaterials-14-01305-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/4b7e1c4ca373/nanomaterials-14-01305-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/54d1e17f7535/nanomaterials-14-01305-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/aad03286d99b/nanomaterials-14-01305-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/63d5e2ebe986/nanomaterials-14-01305-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/ee289736e7c0/nanomaterials-14-01305-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/70a050840fbf/nanomaterials-14-01305-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/efeb8bd69edb/nanomaterials-14-01305-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/a8307115fb79/nanomaterials-14-01305-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/4d1ac13bba99/nanomaterials-14-01305-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/4b7e1c4ca373/nanomaterials-14-01305-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/54d1e17f7535/nanomaterials-14-01305-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/aad03286d99b/nanomaterials-14-01305-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/63d5e2ebe986/nanomaterials-14-01305-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/ee289736e7c0/nanomaterials-14-01305-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea1/11314412/70a050840fbf/nanomaterials-14-01305-g009.jpg

相似文献

[1]
Cancer Treatment Using Nanofibers: A Review.

Nanomaterials (Basel). 2024-8-2

[2]
Controlled Release of Lysozyme Using Polyvinyl Alcohol-Based Polymeric Nanofibers Generated by Electrospinning.

Chem Pharm Bull (Tokyo). 2024

[3]
Temozolomide Conjugated Carbon Quantum Dots Embedded in Core/Shell Nanofibers Prepared by Coaxial Electrospinning as an Implantable Delivery System for Cell Imaging and Sustained Drug Release.

AAPS PharmSciTech. 2019-7-22

[4]
Controlling burst effect with PLA/PVA coaxial electrospun scaffolds loaded with BMP-2 for bone guided regeneration.

Mater Sci Eng C Mater Biol Appl. 2018-12-13

[5]
Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury.

Biomed Pharmacother. 2016-10

[6]
Drug Delivery Applications of Core-Sheath Nanofibers Prepared by Coaxial Electrospinning: A Review.

Pharmaceutics. 2019-7-1

[7]
Polyvinyl Alcohol/Chitosan Single-Layered and Polyvinyl Alcohol/Chitosan/Eudragit RL100 Multi-layered Electrospun Nanofibers as an Ocular Matrix for the Controlled Release of Ofloxacin: an In Vitro and In Vivo Evaluation.

AAPS PharmSciTech. 2021-6-3

[8]
Electrospun Nanofibers With pH-Responsive Coatings for Control of Release Kinetics.

Front Bioeng Biotechnol. 2019-11-27

[9]
Coaxial electrospun angiogenic nanofiber wound dressing containing advanced platelet rich-fibrin.

Int J Biol Macromol. 2022-12-1

[10]
Controlled Release of Metformin Hydrochloride from Core-Shell Nanofibers with Fish Sarcoplasmic Protein.

Medicina (Kaunas). 2019-10-10

引用本文的文献

[1]
Electrospinning: A New Frontier in Peptide Therapeutics.

AAPS PharmSciTech. 2025-2-26

本文引用的文献

[1]
The Capacity of Drug-Metabolising Enzymes in Modulating the Therapeutic Efficacy of Drugs to Treat Rhabdomyosarcoma.

Cancers (Basel). 2024-2-29

[2]
On chip synthesis of a pH sensitive gefitinib anticancer drug nanocarrier based on chitosan/alginate natural polymers.

Sci Rep. 2024-1-8

[3]
Nonwoven/Nanomembrane Composite Functional Sweat Pads.

Membranes (Basel). 2022-12-5

[4]
Electrospun Nanofiber/Textile Supported Composite Membranes with Improved Mechanical Performance for Biomedical Applications.

Membranes (Basel). 2022-11-17

[5]
Silver sulfadiazine loaded zein nanofiber mats as a novel wound dressing.

RSC Adv. 2019-1-2

[6]
Development of Eco-Friendly Nanomembranes of Aloe vera/PVA/ZnO for Potential Applications in Medical Devices.

Polymers (Basel). 2022-3-4

[7]
Investigation of Mechanical, Chemical, and Antibacterial Properties of Electrospun Cellulose-Based Scaffolds Containing Orange Essential Oil and Silver Nanoparticles.

Polymers (Basel). 2021-12-27

[8]
MiRNA-Nanofiber, the Next Generation of Bioactive Scaffolds for Bone Regeneration: A Review.

Micromachines (Basel). 2021-11-29

[9]
Extraction of Natural Dye from Aerial Parts of Argy Wormwood Based on Optimized Taguchi Approach and Functional Finishing of Cotton Fabric.

Materials (Basel). 2021-10-6

[10]
Electrospun Nanofiber-Based Viroblock/ZnO/PAN Hybrid Antiviral Nanocomposite for Personal Protective Applications.

Nanomaterials (Basel). 2021-8-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索