Mojas Nina, Lopes Massimo, Jiricny Josef
Institute of Molecular Cancer Research, University of Zurich, CH-8057 Zurich, Switzerland.
Genes Dev. 2007 Dec 15;21(24):3342-55. doi: 10.1101/gad.455407.
O(6)-Methylguanine ((Me)G) is a highly cytotoxic DNA modification generated by S(N)1-type methylating agents. Despite numerous studies implicating DNA replication, mismatch repair (MMR), and homologous recombination (HR) in (Me)G toxicity, its mode of action has remained elusive. We studied the molecular transactions in the DNA of yeast and mammalian cells treated with N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Although replication fork progression was unaffected in the first cell cycle after treatment, electron microscopic analysis revealed an accumulation of (Me)G- and MMR-dependent single-stranded DNA (ssDNA) gaps in newly replicated DNA. Progression into the second cell cycle required HR, while the following G(2) arrest required the continued presence of (Me)G. Yeast cells overcame this block, while mammalian cells generally failed to recover, and those that did contained multiple sister chromatid exchanges. Notably, the arrest could be abolished by removal of (Me)G after the first S phase. These new data provide compelling support for the hypothesis that MMR attempts to correct (Me)G/C or (Me)G/T mispairs arising during replication. Due to the persistence of (Me)G in the exposed template strand, repair synthesis cannot take place, which leaves single-stranded gaps behind the replication fork. During the subsequent S phase, these gaps cause replication fork collapse and elicit recombination and cell cycle arrest.
O(6)-甲基鸟嘌呤((Me)G)是由S(N)1型甲基化剂产生的一种具有高度细胞毒性的DNA修饰。尽管有大量研究表明DNA复制、错配修复(MMR)和同源重组(HR)与(Me)G毒性有关,但其作用方式仍不清楚。我们研究了用N-甲基-N'-硝基-N-亚硝基胍(MNNG)处理的酵母和哺乳动物细胞DNA中的分子事件。尽管处理后的第一个细胞周期中复制叉的进展未受影响,但电子显微镜分析显示新复制的DNA中积累了(Me)G和MMR依赖性的单链DNA(ssDNA)缺口。进入第二个细胞周期需要HR,而随后的G(2)期停滞需要(Me)G的持续存在。酵母细胞克服了这一阻滞,而哺乳动物细胞通常无法恢复,那些恢复的细胞含有多个姐妹染色单体交换。值得注意的是,在第一个S期后去除(Me)G可以消除这种停滞。这些新数据为MMR试图纠正复制过程中出现的(Me)G/C或(Me)G/T错配这一假说提供了有力支持。由于(Me)G在暴露的模板链中持续存在,修复合成无法进行,这在复制叉后面留下了单链缺口。在随后的S期,这些缺口导致复制叉崩溃,并引发重组和细胞周期停滞。