Suppr超能文献

基于结构的药物设计中柔性蛋白质的建模与选择:p38丝裂原活化蛋白激酶中的主链和侧链运动

Modeling and selection of flexible proteins for structure-based drug design: backbone and side chain movements in p38 MAPK.

作者信息

Subramanian Jyothi, Sharma Somesh, B-Rao Chandrika

机构信息

Nicholas Piramal Research Centre, 1 Nirlon Complex, Off Western Express Highway, Goregaon(E), Mumbai-400063, India.

出版信息

ChemMedChem. 2008 Feb;3(2):336-44. doi: 10.1002/cmdc.200700255.

Abstract

Receptor rearrangement upon ligand binding (induced fit) is a major stumbling block in docking and virtual screening. Even though numerous studies have stressed the importance of including protein flexibility in ligand docking, currently available methods provide only a partial solution to the problem. Most of these methods, being computer intensive, are often impractical to use in actual drug discovery settings. We had earlier shown that ligand-induced receptor side-chain conformational changes could be modeled statistically using data on known receptor-ligand complexes. In this paper, we show that a similar approach can be used to model more complex changes like backbone flips and loop movements. We have used p38 MAPK as a test case and have shown that a few simple structural features of ligands are sufficient to predict the induced variation in receptor conformations. Rigorous validation, both by internal resampling methods and on an external test set, corroborates this finding and demonstrates the robustness of the models. We have also compared our results with those from an earlier molecular dynamics simulation study on DFG loop conformations of p38 MAPK, and found that the results matched in the two cases. Our statistical approach enables one to predict the final ligand-induced conformation of the active site of a protein, based on a few ligand properties, prior to docking the ligand. We can do this without having to trace the step-by-step process by which this state is arrived at (as in molecular dynamics simulations), thereby drastically reducing computational effort.

摘要

配体结合时受体的重排(诱导契合)是对接和虚拟筛选中的一个主要障碍。尽管众多研究强调了在配体对接中纳入蛋白质灵活性的重要性,但目前可用的方法仅为该问题提供了部分解决方案。这些方法大多计算量很大,在实际药物发现环境中往往不实用。我们之前已经表明,配体诱导的受体侧链构象变化可以使用已知受体 - 配体复合物的数据进行统计建模。在本文中,我们表明可以使用类似的方法对更复杂的变化(如主链翻转和环移动)进行建模。我们以p38丝裂原活化蛋白激酶作为测试案例,表明配体的一些简单结构特征足以预测受体构象的诱导变化。通过内部重采样方法和外部测试集进行的严格验证证实了这一发现,并证明了模型的稳健性。我们还将我们的结果与早期关于p38丝裂原活化蛋白激酶DFG环构象的分子动力学模拟研究结果进行了比较,发现两种情况下结果相符。我们的统计方法能够在对接配体之前,基于一些配体性质预测蛋白质活性位点最终的配体诱导构象。我们可以做到这一点,而无需追踪达到该状态的逐步过程(如在分子动力学模拟中那样),从而大幅减少计算量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验