Suppr超能文献

ColdstartCPI:基于诱导契合理论指导的具有改进泛化性能的DTI预测模型。

ColdstartCPI: Induced-fit theory-guided DTI predictive model with improved generalization performance.

作者信息

Zhao Qichang, Zhao Haochen, Guo Linyuan, Zheng Kai, Li Yajie, Ling Qiao, Tang Jing, Li Yaohang, Wang Jianxin

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

Xiangjiang Laboratory, Changsha, China.

出版信息

Nat Commun. 2025 Jul 11;16(1):6436. doi: 10.1038/s41467-025-61745-7.

Abstract

Predicting compound-protein interactions (CPIs) plays a crucial role in drug discovery. Traditional methods, based on the key-lock theory and rigid docking, often fail with novel compounds and proteins due to their inability to account for molecular flexibility and the high sparsity of CPI data. Here, we introduce ColdstartCPI, a framework inspired by induced-fit theory, which leverages unsupervised pre-training features and a Transformer module to learn both compound and protein characteristics. ColdstartCPI treats proteins and compounds as flexible molecules during inference, aligning with biological insights. It outperforms state-of-the-art sequence-based models, particularly for unseen compounds and proteins, and shows strong generalization capability compared to structure-based methods in virtual screening. ColdstartCPI also excels in sparse and low-similarity data conditions, demonstrating its potential in data-limited settings. Our results are validated through literature search, molecular docking, and binding free energy calculations. Overall, ColdstartCPI offers a perspective on sequence-based drug design, presenting a promising tool for drug discovery.

摘要

预测化合物-蛋白质相互作用(CPI)在药物发现中起着至关重要的作用。基于锁钥理论和刚性对接的传统方法,由于无法考虑分子柔性以及CPI数据的高度稀疏性,在面对新化合物和蛋白质时常常失效。在此,我们引入ColdstartCPI,这是一个受诱导契合理论启发的框架,它利用无监督预训练特征和一个Transformer模块来学习化合物和蛋白质的特征。ColdstartCPI在推理过程中将蛋白质和化合物视为柔性分子,这与生物学见解相一致。它优于基于序列的现有模型,特别是对于未见的化合物和蛋白质,并且在虚拟筛选中与基于结构的方法相比具有很强的泛化能力。ColdstartCPI在稀疏和低相似性数据条件下也表现出色,证明了其在数据有限环境中的潜力。我们的结果通过文献检索、分子对接和结合自由能计算得到了验证。总体而言,ColdstartCPI为基于序列的药物设计提供了一个视角,是药物发现的一个有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0115/12254244/680cbcfa1c6b/41467_2025_61745_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验