Suppr超能文献

针对目标类别对评分函数进行稳健优化。

Robust optimization of scoring functions for a target class.

作者信息

Seifert Markus H J

出版信息

J Comput Aided Mol Des. 2009 Sep;23(9):633-44. doi: 10.1007/s10822-009-9276-1. Epub 2009 May 27.

Abstract

Target-specific optimization of scoring functions for protein-ligand docking is an effective method for significantly improving the discrimination of active and inactive molecules in virtual screening applications. Its applicability, however, is limited due to the narrow focus on, e.g., single protein structures. Using an ensemble of protein kinase structures, the publically available directory of useful decoys ligand dataset, and a novel multi-factorial optimization procedure, it is shown here that scoring functions can be tuned to multiple targets of a target class simultaneously. This leads to an improved robustness of the resulting scoring function parameters. Extensive validation experiments clearly demonstrate that (1) virtual screening performance for kinases improves significantly; (2) variations in database content affect this kind of machine-learning strategy to a lesser extent than binary QSAR models, and (3) the reweighting of interaction types is of particular importance for improved screening performance.

摘要

针对蛋白质-配体对接的评分函数进行靶点特异性优化是一种有效方法,可显著提高虚拟筛选应用中活性和非活性分子的区分能力。然而,由于例如仅聚焦于单一蛋白质结构,其适用性受到限制。本文利用一组蛋白激酶结构、公开可用的有用诱饵配体数据集目录以及一种新颖的多因素优化程序,表明评分函数可同时针对一个靶点类别的多个靶点进行调整。这导致所得评分函数参数的稳健性得到提高。广泛的验证实验清楚地表明:(1)激酶的虚拟筛选性能显著提高;(2)数据库内容的变化对这种机器学习策略的影响程度小于二元定量构效关系模型;(3)相互作用类型的重新加权对于提高筛选性能尤为重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验