Suppr超能文献

一种全新的全基因组表达谱逐步分析程序可识别硫胺素基因的转录特征,作为线粒体突变体的分类器。

A novel stepwise analysis procedure of genome-wide expression profiles identifies transcript signatures of thiamine genes as classifiers of mitochondrial mutants.

作者信息

Eijssen L M T, Lindsey P J, Peeters R, Westra R L, van Eijsden R G E, Bolotin-Fukuhara M, Smeets H J M, Vlietinck R F M

机构信息

Department of Genetics and Cell Biology, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands.

出版信息

Yeast. 2008 Feb;25(2):129-40. doi: 10.1002/yea.1573.

Abstract

To extract functional information on genes and processes from large expression datasets, analysis methods are required that can computationally deal with these amounts of data, are tunable to specific research questions, and construct classifiers that are not overspecific to the dataset at hand. To satisfy these requirements, a stepwise procedure that combines elements from principal component analysis and discriminant analysis, was developed to specifically retrieve genes involved in processes of interest and classify samples based upon those genes. In a global expression dataset of 300 gene knock-outs in Saccharomyces cerevisiae, the procedure successfully classified samples with similar 'cellular component' Gene Ontology annotations of the knock-out gene by expression signatures of limited numbers of genes. The genes discriminating 'mitochondrion' from the other subgroups were evaluated in more detail. The thiamine pathway turned out to be one of the processes involved and was successfully evaluated in a logistic model to predict whether yeast knock-outs were mitochondrial or not. Further, this pathway is biologically related to the mitochondrial system. Hence, this strongly indicates that our approach is effective and efficient in extracting meaningful information from large microarray experiments and assigning functions to yet uncharacterized genes.

摘要

为了从大型表达数据集中提取有关基因和过程的功能信息,需要能够在计算上处理这些海量数据、可针对特定研究问题进行调整并构建对现有数据集不过度特异的分类器的分析方法。为满足这些要求,开发了一种结合主成分分析和判别分析元素的逐步程序,以专门检索参与感兴趣过程的基因,并基于这些基因对样本进行分类。在酿酒酵母300个基因敲除的全局表达数据集中,该程序通过有限数量基因的表达特征成功地对具有敲除基因相似“细胞成分”基因本体注释的样本进行了分类。对区分“线粒体”与其他亚组的基因进行了更详细的评估。结果表明硫胺素途径是其中涉及的过程之一,并在逻辑模型中成功评估,以预测酵母敲除是否为线粒体。此外,该途径与线粒体系统在生物学上相关。因此,这有力地表明我们的方法在从大型微阵列实验中提取有意义的信息并为尚未表征的基因赋予功能方面是有效且高效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验