Arenas Juan F, Avila Francisco J, Otero Juan C, Pelaez Daniel, Soto Juan
University of Málaga, Physical Chemistry, Faculty of Science, Málaga, 29071, Spain.
J Phys Chem A. 2008 Jan 17;112(2):249-55. doi: 10.1021/jp075546n. Epub 2007 Dec 18.
Potential energy surfaces, minimum energy reaction paths, minima, transition states, reaction barriers, and conical intersections for the most important atmospheric reactions of methyl nitrate (CH(3)ONO(2)) and methylperoxy nitrite (C(3)HOONO) on the electronic ground state have been studied (i) with the second-order multiconfigurational perturbation theory (CASPT2) by computation of numerical energy gradients for stationary points and (ii) with the density functional theory (DFT). The proposed mechanism explains the conversion of unreactive alkyl peroxy radicals into alkoxy radicals: CH(3)O(2) + NO <=> CH(3)OONO <=> CH(3)O + NO(2) left arrow over right arrow CH(3)ONO(2). Additionally, several discrepancies found in the comparison of the results obtained from the two employed approaches are analyzed. CASPT2 predicts that all dissociation reactions into radicals occur without an extra exit energy barrier. In contrast, DFT finds transition states for the dissociations of cis- and trans-methylperoxy nitrite into CH(3)O + NO(2). Furthermore, multiconfigurational methods [CASPT2 and complete active space SCF (CAS-SCF)] predict the isomerization of CH3ONO2 to CH3OONO to occur in a two-step mechanism: (i) CH(3)ONO(2) --> CH(3)O + NO(2); and (ii) CH(3)O + NO(2) --> CH(3)OONO. The reason for this has to do with the coupling of the ground electronic state with the first excited state. Therefore, it is demonstrated that DFT methods based on single determinantal wave functions give an incorrect picture of the aforementioned reaction mechanisms.
采用二阶多组态微扰理论(CASPT2)通过计算驻点的数值能量梯度,以及采用密度泛函理论(DFT),研究了硝酸甲酯(CH(3)ONO(2))和甲基过氧亚硝酸酯(C(3)HOONO)在电子基态下最重要的大气反应的势能面、最小能量反应路径、极小值、过渡态、反应势垒和锥形交叉点。所提出的机理解释了无反应性的烷基过氧自由基向烷氧基自由基的转化:CH(3)O(2) + NO <=> CH(3)OONO <=> CH(3)O + NO(2) 双向箭头 CH(3)ONO(2)。此外,还分析了两种所用方法所得结果比较中发现的若干差异。CASPT2预测所有自由基解离反应均无额外的出射能垒发生。相比之下,DFT发现顺式和反式甲基过氧亚硝酸酯分解为CH(3)O + NO(2)的过渡态。此外,多组态方法[CASPT2和完全活性空间自洽场(CAS - SCF)]预测CH3ONO2异构化为CH3OONO通过两步机理发生:(i)CH(3)ONO(2) --> CH(3)O + NO(2);以及(ii)CH(3)O + NO(2) --> CH(3)OONO。其原因与基电子态与第一激发态的耦合有关。因此,证明基于单行列式波函数的DFT方法对上述反应机理给出了错误的描述。