Suppr超能文献

硝酸甲酯的光解离机制。基于多态二阶多组态微扰理论的研究。

Photodissociation mechanism of methyl nitrate. A study with the multistate second-order multiconfigurational perturbation theory.

作者信息

Soto Juan, Peláez Daniel, Otero Juan Carlos, Avila Francisco José, Arenas Juan Francisco

机构信息

Department of Physical Chemistry, Faculty of Science, University of Málaga, Campus de Teationos, Málaga, 29071, Spain.

出版信息

Phys Chem Chem Phys. 2009 Apr 21;11(15):2631-9. doi: 10.1039/b820646e. Epub 2009 Feb 23.

Abstract

The photodissociation reactions of methyl nitrate CH(3)ONO(2) starting at the 193 and 248 nm photolytic wavelengths have been studied with the second-order multiconfigurational perturbation theory (CASPT2) by computation of numerical energy gradients for stationary points. In addition, energy profiles of reaction paths and vertical excitations have been investigated with the multistate extension of the multiconfigurational second-order perturbation theory (MS-CASPT2). It is found that excitation at 193 nm yields three reaction paths: (i) the so-called slow channel CH(3)ONO(2)--> CH(3)O + NO(2)--> CH(3)O + NO + O; (ii) the fast channel CH(3)ONO(2)--> CH(3)O + NO(2); and (iii) CH(3)ONO(2)--> CH(3)ONO + O. The slow channel starts at the S(4) surface, in contrast, the population of the S(3) state can lead to the fast channel or to direct atomic oxygen extrusion. The rather high relative yield of the channel leading to oxygen extrusion from methyl nitrate is explained on the basis of an S(3)/S(2) conical intersection that transfers the initial excitation localized in the npi* S(3) state to the sigmapi* S(2) state with a consequent weakening of the N-O bond. With respect to photolysis at 248 nm, it was not possible to unambiguously distinguish between S(1) and S(2) as the populated state, however, the S(2) state is suggested as mainly responsible for dissociation at this excitation energy.

摘要

利用二阶多组态微扰理论(CASPT2),通过计算驻点的数值能量梯度,研究了起始于193和248 nm光解波长的硝酸甲酯CH(3)ONO(2)的光解离反应。此外,还利用多组态二阶微扰理论的多态扩展(MS-CASPT2)研究了反应路径和垂直激发的能量分布。研究发现,193 nm处的激发产生三条反应路径:(i)所谓的慢通道CH(3)ONO(2)--> CH(3)O + NO(2)--> CH(3)O + NO + O;(ii)快通道CH(3)ONO(2)--> CH(3)O + NO(2);以及(iii)CH(3)ONO(2)--> CH(3)ONO + O。慢通道起始于S(4)表面,相比之下,S(3)态的布居可导致快通道或直接挤出原子氧。基于S(3)/S(2)锥形交叉点,将初始局域在npi* S(3)态的激发转移到sigmapi* S(2)态,从而削弱N-O键,解释了从硝酸甲酯中挤出氧的通道相对产率较高的现象。关于248 nm处的光解,无法明确区分作为布居态的S(1)和S(2),然而,建议S(2)态主要负责该激发能量下的解离。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验