Harzsch Steffen, Hafner Gary
Universität Ulm, Abteilung Neurobiologie and Sektion Biosystematische Dokumentation, Albert-Einstein-Str. 11, D-89081 Ulm, Germany.
Arthropod Struct Dev. 2006 Dec;35(4):319-40. doi: 10.1016/j.asd.2006.08.009.
The architecture of the adult arthropod visual system for many decades has contributed important character sets that are useful for reconstructing the phylogenetic relationships within this group. In the current paper we explore whether aspects of eye development can also contribute new arguments to the discussion of arthropod phylogeny. We review the current knowledge on eye formation in Trilobita, Xiphosura, Myriapoda, Hexapoda, and Crustacea. All euarthropod taxa share the motif of a proliferation zone at the side of the developing eye field that contributes new eye elements. Two major variations of this common motif can be distinguished: 1. The "row by row type" of Trilobita, Xiphosura, and Diplopoda. In this type, the proliferation zone at the side of the eye field generates new single, large elements with a high and variable cell number, which are added to the side of the eye and extend rows of existing eye elements. Cell proliferation, differentiation and ommatidial assembly seem to be separated in time but spatially confined within the precursors of the optic units which grow continuously once they are formed (intercalary growth). 2. The "morphogenetic front type" of eye formation in Crustacea+Hexapoda (Tetraconata). In this type, there is a clear temporal and spatial separation of the formation and differentiation processes. Proliferation and the initial steps of pattern formation take place in linear and parallel mitotic and morphogenetic fronts (the mitotic waves and the morphogenetic furrow/transition zone) and numerous but small new elements with a strictly fixed set of cells are added to the eye field. In Tetraconata, once formed, the individual ommatidia do not grow any more. Scutigeromorph chilopods take an intermediate position between these two major types. We suggest that the "row by row type" as seen in Trilobita, Xiphosura and Diplopoda represents the plesiomorphic developmental mode of eye formation from the euarthropod ground pattern whereas the "morphogenetic front type" is apomorphic for the Tetraconata. Our data are discussed with regard to two competing hypotheses on arthropod phylogeny, the "Tracheata" versus "Tetraconata" concept. The modes of eye development in Myriapoda is more parsimonious to explain in the Tetraconata hypothesis so that our data raise the possibility that myriapod eyes may not be secondarily reconstructed insect eyes as the prevailing hypothesis suggests.
几十年来,成年节肢动物视觉系统的结构提供了重要的特征集,有助于重建该类群内部的系统发育关系。在本文中,我们探讨眼睛发育的各个方面是否也能为节肢动物系统发育的讨论提供新的论据。我们回顾了关于三叶虫纲、剑尾目、多足纲、六足纲和甲壳纲眼睛形成的现有知识。所有真节肢动物类群在发育中的眼区一侧都有一个增殖区的模式,该增殖区会产生新的眼元素。这种常见模式有两种主要变体:1. 三叶虫纲、剑尾目和倍足纲的“逐行型”。在这种类型中,眼区一侧的增殖区产生新的单个大元素,其细胞数量多且可变,这些元素被添加到眼的一侧并延伸现有眼元素的行。细胞增殖、分化和小眼组装在时间上似乎是分开的,但在光学单元的前体中在空间上受到限制,一旦形成,这些前体就会持续生长(居间生长)。2. 甲壳纲 + 六足纲(四聚体)眼睛形成的“形态发生前沿型”。在这种类型中,形成和分化过程在时间和空间上有明显的分离。增殖和模式形成的初始步骤发生在线性和平行的有丝分裂和形态发生前沿(有丝分裂波和形态发生沟/过渡区),并且有许多但小的新元素,其细胞数量严格固定,被添加到眼区。在四聚体中,单个小眼一旦形成就不再生长。蚰蜒目唇足纲动物处于这两种主要类型之间的中间位置。我们认为,三叶虫纲、剑尾目和倍足纲中所见的“逐行型”代表了真节肢动物基础模式中眼睛形成的原始发育模式,而“形态发生前沿型”是四聚体的衍生模式。我们的数据针对关于节肢动物系统发育的两种相互竞争的假说,即“气管类”与“四聚体”概念进行了讨论。多足纲眼睛的发育模式在四聚体假说中更易于解释,因此我们的数据增加了一种可能性,即多足纲动物的眼睛可能不像主流假说所认为的那样是次生重建的昆虫眼睛。