Suppr超能文献

复合纤维蛋白支架可提高组织工程血管的机械强度并保持其收缩性。

Composite fibrin scaffolds increase mechanical strength and preserve contractility of tissue engineered blood vessels.

作者信息

Yao Lan, Liu Jinyu, Andreadis Stelios T

机构信息

Bioengineering Laboratory, Department of Chemical and Biological Engineering, State University of New York at Buffalo, Amherst, NY 14260, USA.

出版信息

Pharm Res. 2008 May;25(5):1212-21. doi: 10.1007/s11095-007-9499-6. Epub 2007 Dec 19.

Abstract

OBJECTIVES

We recently demonstrated that fibrin-based tissue engineered blood vessels (TEV) exhibited vascular reactivity, matrix remodeling and sufficient strength for implantation into the veins of an ovine animal model, where they remained patent for 15 weeks. Here we present an approach to improve the mechanical properties of fibrin-based TEV and examine the relationship between mechanical strength and smooth muscle cell (SMC) function.

MATERIALS AND METHODS

To this end, we prepared TEV that were composed of two layers: a cellular layer containing SMC embedded in fibrin hydrogel to provide contractility and matrix remodeling; and a second cell-free fibrin layer composed of high concentration fibrinogen to provide mechanical strength.

RESULTS

The ultimate tensile force of double-layered TEV increased with FBG concentration in the cell-free layer in a dose-dependent manner. Double-layered TEV exhibited burst pressure that was ten-fold higher than single-layered tissues but vascular reactivity remained high even though the cells were constricting an additional tissue layer.

CONCLUSION

These results showed that mechanical strength results largely from the biomaterial but contractility requires active cellular machinery. Consequently, they may suggest novel approaches for engineering biomaterials that satisfy the requirement for high mechanical strength while preserving SMC function.

摘要

目的

我们最近证明,基于纤维蛋白的组织工程血管(TEV)表现出血管反应性、基质重塑以及足够的强度,可植入绵羊动物模型的静脉中,并在其中保持通畅15周。在此,我们提出一种方法来改善基于纤维蛋白的TEV的机械性能,并研究机械强度与平滑肌细胞(SMC)功能之间的关系。

材料与方法

为此,我们制备了由两层组成的TEV:一层是细胞层,包含嵌入纤维蛋白水凝胶中的SMC,以提供收缩性和基质重塑;另一层是无细胞纤维蛋白层,由高浓度纤维蛋白原组成,以提供机械强度。

结果

双层TEV的极限拉伸力随着无细胞层中纤维蛋白原浓度的增加而呈剂量依赖性增加。双层TEV的爆破压力比单层组织高十倍,尽管细胞收缩了额外的组织层,但血管反应性仍然很高。

结论

这些结果表明,机械强度主要源于生物材料,但收缩性需要活跃的细胞机制。因此,它们可能为设计满足高机械强度要求同时保留SMC功能的生物材料提出新方法。

相似文献

3
Engineering of fibrin-based functional and implantable small-diameter blood vessels.基于纤维蛋白的功能性可植入小口径血管的工程化
Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1451-60. doi: 10.1152/ajpheart.00479.2004. Epub 2004 Oct 14.

引用本文的文献

4
Specialty Tough Hydrogels and Their Biomedical Applications.特种坚韧水凝胶及其生物医学应用。
Adv Healthc Mater. 2020 Jan;9(2):e1901396. doi: 10.1002/adhm.201901396. Epub 2019 Dec 17.
7
Biomaterials for hollow organ tissue engineering.用于中空器官组织工程的生物材料。
Fibrogenesis Tissue Repair. 2016 Mar 23;9:3. doi: 10.1186/s13069-016-0040-6. eCollection 2016.
8
The Tissue-Engineered Vascular Graft-Past, Present, and Future.组织工程血管移植物的过去、现在与未来
Tissue Eng Part B Rev. 2016 Feb;22(1):68-100. doi: 10.1089/ten.teb.2015.0100. Epub 2015 Oct 8.

本文引用的文献

3
6
Engineering of fibrin-based functional and implantable small-diameter blood vessels.基于纤维蛋白的功能性可植入小口径血管的工程化
Am J Physiol Heart Circ Physiol. 2005 Mar;288(3):H1451-60. doi: 10.1152/ajpheart.00479.2004. Epub 2004 Oct 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验