Zvyagintsev Mikhail, Thönnessen Heike, Dammers Jürgen, Boers Frank, Mathiak Klaus
Department of Psychiatry and Psychotherapy, University Hospital Aachen, RWTH Aachen, 52074 Aachen, Germany.
J Neurosci Methods. 2008 Mar 15;168(2):325-33. doi: 10.1016/j.jneumeth.2007.10.025. Epub 2007 Nov 9.
Data processing techniques in electroencephalography (EEG) and magnetoencephalography (MEG) need user interactions. However, particularly in clinical applications, fast and objective data processing is important. Here we present an observer-independent method for EEG and MEG analysis of mismatch negativity (MMN) that allows reliable estimation of source activity based on objective anatomical references. The procedure integrates several steps including artifact rejection, source estimation and statistical analysis. It enables the evaluation of source activity in a fully automatic and unsupervised manner. To test its feasibility we obtained EEG and MEG responses in an auditory oddball paradigm in 12 healthy volunteers. The automatized method of EEG and MEG data analysis estimated source activity. The automatically detected MMN was closely comparable with the results obtained by a user-controlled method based on the dipole fitting. The presented workflow can be performed easily, rapidly, and reliably. This development may open new fields in research and clinical applications of source-based EEG and MEG.
脑电图(EEG)和脑磁图(MEG)中的数据处理技术需要用户交互。然而,特别是在临床应用中,快速且客观的数据处理很重要。在此,我们提出一种用于脑电图和脑磁图失配负波(MMN)分析的独立于观察者的方法,该方法基于客观的解剖学参考能够可靠地估计源活动。该过程整合了包括伪迹去除、源估计和统计分析在内的多个步骤。它能够以完全自动且无监督的方式评估源活动。为测试其可行性,我们在12名健康志愿者的听觉oddball范式中获取了脑电图和脑磁图响应。脑电图和脑磁图数据分析的自动化方法估计了源活动。自动检测到的失配负波与基于偶极子拟合的用户控制方法所获得的结果密切可比。所呈现的工作流程可以轻松、快速且可靠地执行。这一进展可能会在基于源的脑电图和脑磁图的研究及临床应用中开辟新的领域。