Suppr超能文献

基于脑磁图/脑电图中皮质源动态的功能网络多变量重建

Multivariate reconstruction of functional networks from cortical sources dynamics in MEG/EEG.

作者信息

Dossevi Anael, Cosmelli Diego, Garnero Line, Ammari Habib

机构信息

Laboratoire de Neurosciences Cognitives andImagerie Cérébrale (LENA), Centre National de la Recherche Scientifique(CNRS) UPR 640, Université Pierre et Marie Curie-Paris 6, MEG/EEG Centre,UMR 7620 Paris, France.

出版信息

IEEE Trans Biomed Eng. 2008 Aug;55(8):2074-86. doi: 10.1109/TBME.2008.919140.

Abstract

In this paper, we present a simple method to find networks of time-correlated brain sources, using a singular value decomposition (SVD) analysis of the source matrix estimated after any linear distributed inverse problem in magnetoencephalography (MEG) and electroencephalography (EEG). Despite the high dimension of the source space, our method allows for the rapid computation of the source matrix. In order to do this, we use the linear relationship between sensors and sources, and show that the SVD can be calculated through a simple and fast computation. We show that this method allows the estimation of one or several global networks of correlated sources without calculating a coupling coefficient between all pairs of sources. A series of simulations studies were performed to estimate the efficiency of the method. In order to illustrate the validity of this approach in experimental conditions, we used real MEG data from a visual stimulation task on one test subject and estimated, in different time windows of interest, functional networks of correlated sources.

摘要

在本文中,我们提出了一种简单的方法来寻找时间相关的脑源网络,该方法使用了对在脑磁图(MEG)和脑电图(EEG)中任何线性分布式逆问题估计后的源矩阵进行奇异值分解(SVD)分析。尽管源空间维度很高,但我们的方法允许快速计算源矩阵。为了做到这一点,我们利用传感器与源之间的线性关系,并表明奇异值分解可以通过简单快速的计算来完成。我们表明,该方法无需计算所有源对之间的耦合系数,就能估计一个或几个相关源的全局网络。进行了一系列模拟研究以评估该方法的效率。为了说明这种方法在实验条件下的有效性,我们使用了来自一名测试对象的视觉刺激任务的真实MEG数据,并在不同的感兴趣时间窗口内估计了相关源的功能网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验