Suppr超能文献

TASK通道决定特定呼吸神经元的pH敏感性,但对中枢呼吸化学敏感性没有作用。

TASK channels determine pH sensitivity in select respiratory neurons but do not contribute to central respiratory chemosensitivity.

作者信息

Mulkey Daniel K, Talley Edmund M, Stornetta Ruth L, Siegel Audra R, West Gavin H, Chen Xiangdong, Sen Neil, Mistry Akshitkumar M, Guyenet Patrice G, Bayliss Douglas A

机构信息

Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.

出版信息

J Neurosci. 2007 Dec 19;27(51):14049-58. doi: 10.1523/JNEUROSCI.4254-07.2007.

Abstract

Central respiratory chemoreception is the mechanism by which the CNS maintains physiologically appropriate pH and PCO2 via control of breathing. A prominent hypothesis holds that neural substrates for this process are distributed widely in the respiratory network, especially because many neurons that make up this network are chemosensitive in vitro. We and others have proposed that TASK channels (TASK-1, K(2P)3.1 and/or TASK-3, K(2P)9.1) may serve as molecular sensors for central chemoreception because they are highly expressed in multiple neuronal populations in the respiratory pathway and contribute to their pH sensitivity in vitro. To test this hypothesis, we examined the chemosensitivity of two prime candidate chemoreceptor neurons in vitro and tested ventilatory responses to CO2 using TASK channel knock-out mice. The pH sensitivity of serotonergic raphe neurons was abolished in TASK channel knock-outs. In contrast, pH sensitivity of neurons in the mouse retrotrapezoid nucleus (RTN) was fully maintained in a TASK null background, and pharmacological evidence indicated that a K+ channel with properties distinct from TASK channels contributes to the pH sensitivity of rat RTN neurons. Furthermore, the ventilatory response to CO2 was completely retained in single or double TASK knock-out mice. These data rule out a strict requirement for TASK channels or raphe neurons in central respiratory chemosensation. Furthermore, they indicate that a non-TASK K+ current contributes to chemosensitivity of RTN neurons, which are profoundly pH-sensitive and capable of driving respiratory output in response to local pH changes in vivo.

摘要

中枢呼吸化学感受是中枢神经系统通过控制呼吸来维持生理上合适的pH值和二氧化碳分压的机制。一个突出的假说是,这一过程的神经底物广泛分布于呼吸网络中,特别是因为构成该网络的许多神经元在体外具有化学敏感性。我们和其他人提出,TASK通道(TASK-1,K(2P)3.1和/或TASK-3,K(2P)9.1)可能作为中枢化学感受的分子传感器,因为它们在呼吸通路的多个神经元群体中高度表达,并在体外对其pH敏感性有贡献。为了验证这一假说,我们在体外检测了两种主要的候选化学感受神经元的化学敏感性,并使用TASK通道敲除小鼠测试了对二氧化碳的通气反应。TASK通道敲除小鼠中5-羟色胺能中缝神经元的pH敏感性消失。相反,在TASK基因缺失背景下,小鼠延髓头端腹外侧网状核(RTN)神经元的pH敏感性完全得以维持,药理学证据表明,一种性质不同于TASK通道的钾通道对大鼠RTN神经元的pH敏感性有贡献。此外,单基因或双基因TASK敲除小鼠对二氧化碳的通气反应完全保留。这些数据排除了中枢呼吸化学感受中对TASK通道或中缝神经元的严格要求。此外,它们表明一种非TASK钾电流对RTN神经元的化学敏感性有贡献,RTN神经元对pH高度敏感,能够在体内响应局部pH变化驱动呼吸输出。

相似文献

引用本文的文献

6
Central respiratory chemoreception.中枢呼吸化学感受性。
Handb Clin Neurol. 2022;188:37-72. doi: 10.1016/B978-0-323-91534-2.00007-2.

本文引用的文献

3
TASK-like potassium channels and oxygen sensing in the carotid body.类TASK钾通道与颈动脉体中的氧感知
Respir Physiol Neurobiol. 2007 Jul 1;157(1):55-64. doi: 10.1016/j.resp.2007.02.013. Epub 2007 Feb 20.
5
Murine embryonic stem cells.小鼠胚胎干细胞
Methods Enzymol. 2006;418:3-21. doi: 10.1016/S0076-6879(06)18001-5.
10
Central chemoreception 2005: a brief review.2005年中枢化学感受:简要综述
Auton Neurosci. 2006 Jun 30;126-127:332-8. doi: 10.1016/j.autneu.2006.02.003. Epub 2006 Apr 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验