Suppr超能文献

用于动态细胞微环境并行控制的微流控流动编码切换

Microfluidic flow-encoded switching for parallel control of dynamic cellular microenvironments.

作者信息

King Kevin R, Wang Sihong, Jayaraman Arul, Yarmush Martin L, Toner Mehmet

机构信息

Harvard-MIT, Division of Health Science and Technology, 51 Blosson St., Rm 408, Boston, MA 02114, USA.

出版信息

Lab Chip. 2008 Jan;8(1):107-16. doi: 10.1039/b716962k. Epub 2007 Nov 29.

Abstract

The temporal pattern of a biological stimulus is an important determinant of the resulting cellular response. We present a microfluidic parallel perfusion culture system for controlling the dynamics of soluble cell microenvironments while simultaneously performing live-cell imaging of cellular responses. A "Flow-encoded Switching" (FES) design strategy is developed to simultaneously deliver many different temporal profiles of stimuli, including pulse train widths, lengths, and frequencies, to downstream adherent cells using a single input control. The design strategy uses principles of laminar flow and diffusion-limited mixing to encode the state of the network (the instantaneous stimulus concentrations in each channel) into the ratio of two flow rates, which is controlled by a single differential pressure. To demonstrate the utility of this experimental system, we investigated the effect of dynamic stimuli on NFkappaB transcriptional activation and cell fate determination. Our results illustrate that transcriptional responses and cell fate decisions depend both quantitatively and qualitatively on the timing of the stimulus. In summary, by encoding dynamic stimuli in a single input pressure, microfluidic flow-encoded switching offers a scalable experimental method for systematically probing the functional significance of temporally patterned cellular environments.

摘要

生物刺激的时间模式是所产生细胞反应的一个重要决定因素。我们提出了一种微流控平行灌注培养系统,用于控制可溶性细胞微环境的动态变化,同时对细胞反应进行活细胞成像。开发了一种“流编码切换”(FES)设计策略,以使用单个输入控制将许多不同的刺激时间模式,包括脉冲序列宽度、长度和频率,同时传递给下游贴壁细胞。该设计策略利用层流和扩散限制混合的原理,将网络状态(每个通道中的瞬时刺激浓度)编码为两个流速的比率,这由单个压差控制。为了证明该实验系统的实用性,我们研究了动态刺激对NFκB转录激活和细胞命运决定的影响。我们的结果表明,转录反应和细胞命运决定在数量和质量上都取决于刺激的时间。总之,通过在单个输入压力中编码动态刺激,微流控流编码切换提供了一种可扩展的实验方法,用于系统地探究时间模式化细胞环境的功能意义。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验