Bloodgood Brenda L, Sabatini Bernardo L
Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
J Physiol. 2008 Mar 15;586(6):1475-80. doi: 10.1113/jphysiol.2007.148353. Epub 2007 Dec 20.
Activation of glutamatergic synapses onto pyramidal neurons produces a synaptic depolarization as well as a buildup of intracellular calcium (Ca(2+)). The synaptic depolarization propagates through the dendritic arbor and can be detected at the soma with a recording electrode. Current influx through AMPA-type glutamate receptors (AMPARs) provides the depolarizing drive, and the amplitudes of synaptic potentials are generally thought to reflect the number and properties of these receptors at each synapse. In contrast, synaptically evoked Ca(2+) transients are limited to the spine containing the active synapse and result primarily from Ca(2+) influx through NMDA-type glutamate receptors (NMDARs). Here we review recent studies that reveal that both synaptic depolarizations and spine head Ca(2+) transients are strongly regulated by the activity of postsynaptic, non-glutamate receptor ion channels. In hippocampal pyramidal neurons, voltage- and Ca(2+)-gated ion channels located in dendritic spines open as downstream consequences of glutamate receptor activation and act within a complex signalling loop that feeds back to regulate synaptic signals. Dynamic regulation of these ion channels offers a powerful mechanism of synaptic plasticity that is independent of direct modulation of glutamate receptors.
锥体细胞上谷氨酸能突触的激活会产生突触去极化以及细胞内钙(Ca(2+))的积累。突触去极化通过树突分支传播,并且可以用记录电极在胞体处检测到。通过AMPA型谷氨酸受体(AMPARs)的电流内流提供去极化驱动力,并且突触电位的幅度通常被认为反映了每个突触处这些受体的数量和特性。相比之下,突触诱发的Ca(2+)瞬变仅限于含有活跃突触的棘突,并且主要是由通过NMDA型谷氨酸受体(NMDARs)的Ca(2+)内流导致的。在这里,我们综述了最近的研究,这些研究表明突触去极化和棘突头部Ca(2+)瞬变都受到突触后非谷氨酸受体离子通道活性的强烈调节。在海马锥体细胞中,位于树突棘的电压门控和钙门控离子通道作为谷氨酸受体激活的下游结果而开放,并在一个复杂的信号回路中起作用,该回路反馈以调节突触信号。这些离子通道的动态调节提供了一种强大的突触可塑性机制,该机制独立于谷氨酸受体的直接调节。