Knowles Tuomas P, Fitzpatrick Anthony W, Meehan Sarah, Mott Helen R, Vendruscolo Michele, Dobson Christopher M, Welland Mark E
Nanoscience Centre, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0FF, UK.
Science. 2007 Dec 21;318(5858):1900-3. doi: 10.1126/science.1150057.
Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.
蛋白质分子有能力形成丰富多样的天然和人工结构及材料。我们发现,淀粉样纤维是由多种多肽分子自组装而成的有序超分子纳米结构,其刚性在四个数量级范围内变化,构成了一类高性能生物材料。我们阐明了纤维材料特性的分子起源,并表明其刚性的主要贡献源自一个由可变侧链相互作用调节的通用主链间氢键网络。