Wu Haoran, Lyu Hao, Jiang Hongbo, Wang Yancheng, Yang Rusen, Tofail Syed A M, Xu Hai, Guo Chengchen, Mei Deqing, Gazit Ehud, Tao Kai
State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China.
Future Science Research Institute, Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou 311200, China.
Sci Adv. 2025 Jun 20;11(25):eadu6759. doi: 10.1126/sciadv.adu6759. Epub 2025 Jun 18.
Bioinspired piezoelectricity is extensively explored for diverse bio-machine interface and biomedical engineering applications. Nevertheless, state-of-the-art bio-piezoelectricity mainly focuses on crystallization. Yet, crystalized structures exhibit several shortcomings, including limited biocompatibility or biodegradability along with intrinsic non-stretchability. Herein, peptides fibrillization is reported to present inherent bio-piezoelectricity. Upon forming double-network framework with silk fibroin, fibrous peptide piezogels of innate biocompatibility and biodegradability are achieved, showing a programmable piezoelectricity. In particular, the bioinspired supramolecular piezogel can linearly respond to external compression and stretching in large force regions, extensively expanding the application potential bio-piezoelectricity. Upon designing a "W"-shaped structural conformation, a peptide fibrous piezogel-based piezoelectric sensor is shown to be used for detection of limb movements and subcutaneous implantation of the bioinspired piezoelectric electronics, realizing in situ and real-time monitoring of stimuli responses. The findings suggest the promising potential of peptide fibrillization-based bio-piezoelectricity for diverse bio-machine interface and biomedical engineering applications.
受生物启发的压电性已被广泛探索用于各种生物-机器接口和生物医学工程应用。然而,目前最先进的生物压电性主要集中在结晶方面。然而,结晶结构存在几个缺点,包括有限的生物相容性或生物降解性以及固有的不可拉伸性。在此,据报道肽纤维化具有固有的生物压电性。与丝素蛋白形成双网络框架后,可实现具有固有生物相容性和生物降解性的纤维状肽压电凝胶,显示出可编程的压电性。特别是,这种受生物启发的超分子压电凝胶在大力区域能够对外部压缩和拉伸做出线性响应,极大地扩展了生物压电性的应用潜力。通过设计一种“W”形结构构象,基于肽纤维压电凝胶的压电传感器被证明可用于检测肢体运动以及生物启发的压电电子器件的皮下植入,实现对刺激反应的原位和实时监测。这些发现表明基于肽纤维化的生物压电性在各种生物-机器接口和生物医学工程应用中具有广阔的潜力。