Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
The Novo Nordisk Foundation Centre for Biosustainability, Building 220, Søltofts Plads 200, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
Int J Mol Sci. 2024 Oct 8;25(19):10809. doi: 10.3390/ijms251910809.
In classical amyloidoses, amyloid fibres form through the nucleation and accretion of protein monomers, with protofibrils and fibrils exhibiting a cross-β motif of parallel or antiparallel β-sheets oriented perpendicular to the fibre direction. These protofibrils and fibrils can intertwine to form mature amyloid fibres. Similar phenomena can occur in blood from individuals with circulating inflammatory molecules (and also some originating from viruses and bacteria). Such pathological clotting can result in an anomalous amyloid form termed fibrinaloid microclots. Previous proteomic analyses of these microclots have shown the presence of non-fibrin(ogen) proteins, suggesting a more complex mechanism than simple entrapment. We thus provide evidence against such a simple entrapment model, noting that clot pores are too large and centrifugation would have removed weakly bound proteins. Instead, we explore whether co-aggregation into amyloid fibres may involve axial (multiple proteins within the same fibril), lateral (single-protein fibrils contributing to a fibre), or both types of integration. Our analysis of proteomic data from fibrinaloid microclots in different diseases shows no significant quantitative overlap with the normal plasma proteome and no correlation between plasma protein abundance and their presence in fibrinaloid microclots. Notably, abundant plasma proteins like α-2-macroglobulin, fibronectin, and transthyretin are absent from microclots, while less abundant proteins such as adiponectin, periostin, and von Willebrand factor are well represented. Using bioinformatic tools, including AmyloGram and AnuPP, we found that proteins entrapped in fibrinaloid microclots exhibit high amyloidogenic tendencies, suggesting their integration as cross-β elements into amyloid structures. This integration likely contributes to the microclots' resistance to proteolysis. Our findings underscore the role of cross-seeding in fibrinaloid microclot formation and highlight the need for further investigation into their structural properties and implications in thrombotic and amyloid diseases. These insights provide a foundation for developing novel diagnostic and therapeutic strategies targeting amyloidogenic cross-seeding in blood clotting disorders.
在经典淀粉样变中,淀粉样纤维通过蛋白质单体的成核和堆积形成,原纤维和纤维表现出平行或反平行β-片层的交叉β构象,这些β-片层垂直于纤维方向排列。这些原纤维和纤维可以交织形成成熟的淀粉样纤维。类似的现象也可能发生在个体循环炎症分子(也有一些来源于病毒和细菌)的血液中。这种病理性凝血会导致一种异常的淀粉样形式,称为纤维原样微栓。以前对这些微栓的蛋白质组学分析表明存在非纤维蛋白(原)蛋白,这表明其机制比简单的捕获更为复杂。因此,我们提供了反对这种简单捕获模型的证据,指出血栓孔隙太大,离心会去除弱结合蛋白。相反,我们探讨了是否可以通过共聚集到淀粉样纤维中涉及轴向(同一纤维内的多个蛋白质)、侧向(单个蛋白质纤维贡献纤维)或两者的整合。我们对不同疾病纤维原样微栓的蛋白质组学数据的分析表明,与正常血浆蛋白质组没有显著的定量重叠,也没有血浆蛋白丰度与其在纤维原样微栓中的存在之间的相关性。值得注意的是,大量的血浆蛋白,如α-2-巨球蛋白、纤维连接蛋白和转甲状腺素蛋白,不存在于微栓中,而较少的丰富蛋白,如脂联素、骨膜蛋白和血管性血友病因子,却很好地代表了它们。使用生物信息学工具,包括 AmyloGram 和 AnuPP,我们发现被困在纤维原样微栓中的蛋白质具有很高的淀粉样形成倾向,表明它们作为交叉-β元件整合到淀粉样结构中。这种整合可能有助于微栓抵抗蛋白水解。我们的发现强调了交叉播种在纤维原样微栓形成中的作用,并突出了进一步研究其结构特性及其在血栓和淀粉样疾病中的意义的必要性。这些见解为开发针对血液凝固障碍中淀粉样形成交叉播种的新型诊断和治疗策略提供了基础。