Zhang Qian, Timofeyev Valeriy, Lu Ling, Li Ning, Singapuri Anil, Long Melissa K, Bond Chris T, Adelman John P, Chiamvimonvat Nipavan
Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, One Shields Ave, GBSF 6315, Davis, California 95616, USA.
Circ Res. 2008 Feb 29;102(4):465-71. doi: 10.1161/CIRCRESAHA.107.161778. Epub 2007 Dec 20.
Since the first description of the anatomical atrioventricular nodes (AVNs), a large number of studies have provided insights into the heterogeneity of the structure as well as a repertoire of ion channel proteins that govern this complex conduction pathway between the atria and ventricles. These studies have revealed the intricate organization of multiple nodal and nodal-like myocytes contributing to the unique electrophysiology of the AVN in health and diseases. On the other hand, information regarding the contribution of specific ion channels to the function of the AVN remains incomplete. We reason that the identification of AVN-specific ion channels may provide a more direct and rational design of therapeutic target in the control of AVN conduction in atrial flutter/fibrillation, one of the most common arrhythmias seen clinically. In this study, we took advantage of 2 genetically altered mouse models with overexpression or null mutation of 1 of a small conductance Ca2+-activated K+ channel isoform, SK2 channel, and demonstrated robust phenotypes of AVN dysfunction in these experimental models. Overexpression of SK2 channels results in the shortening of the spontaneous action potentials of the AVN cells and an increase in the firing frequency. On the other hand, ablation of the SK2 channel results in the opposite effects on the spontaneous action potentials of the AVN. Furthermore, we directly documented the expression of SK2 channel in mouse AVN using multiple techniques. The new insights may have important implications in providing novel drug targets for the modification of AVN conduction in the treatment of atrial arrhythmias.
自从首次描述解剖学上的房室结(AVN)以来,大量研究深入探讨了其结构的异质性以及调控心房与心室之间这一复杂传导通路的离子通道蛋白库。这些研究揭示了多个结状和类结状心肌细胞的复杂组织架构,它们共同促成了健康和疾病状态下AVN独特的电生理特性。另一方面,关于特定离子通道对AVN功能贡献的信息仍不完整。我们认为,识别AVN特异性离子通道可能为控制临床常见心律失常之一的心房扑动/颤动中的AVN传导提供更直接且合理的治疗靶点设计。在本研究中,我们利用了两种基因改变的小鼠模型,它们分别对小电导Ca2+激活K+通道亚型之一SK2通道进行了过表达或基因敲除突变,并在这些实验模型中证明了AVN功能障碍的显著表型。SK2通道的过表达导致AVN细胞自发动作电位缩短以及发放频率增加。另一方面,SK2通道的缺失对AVN的自发动作电位产生相反的影响。此外,我们使用多种技术直接记录了SK2通道在小鼠AVN中的表达。这些新见解可能对为治疗房性心律失常时改变AVN传导提供新的药物靶点具有重要意义。