Computational Physiopathology Unit, Department of Electrical, Electronic and Information Engineering 'Guglielmo Marconi,', University of Bologna, Cesena, Italy.
Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
J Physiol. 2024 Oct;602(19):4821-4847. doi: 10.1113/JP285950. Epub 2024 Sep 13.
The atrioventricular node (AVN) is a crucial component of the cardiac conduction system. Despite its pivotal role in regulating the transmission of electrical signals between atria and ventricles, a comprehensive understanding of the cellular electrophysiological mechanisms governing AVN function has remained elusive. This paper presents a detailed computational model of mouse AVN cell action potential (AP). Our model builds upon previous work and introduces several key refinements, including accurate representation of membrane currents and exchangers, calcium handling, cellular compartmentalization, dynamic update of intracellular ion concentrations, and calcium buffering. We recalibrated and validated the model against existing and unpublished experimental data. In control conditions, our model reproduces the AVN AP experimental features, (e.g. rate = 175 bpm, experimental range [121, 191] bpm). Notably, our study sheds light on the contribution of L-type calcium currents, through both Ca1.2 and Ca1.3 channels, in AVN cells. The model replicates several experimental observations, including the cessation of firing upon block of Ca1.3 or I current. I block induces a reduction in beating rate of 11%. In summary, this work presents a comprehensive computational model of mouse AVN cell AP, offering a valuable tool for investigating pacemaking mechanisms and simulating the impact of ionic current blockades. By integrating calcium handling and refining formulation of ionic currents, our model advances understanding of this critical component of the cardiac conduction system, providing a platform for future developments in cardiac electrophysiology. KEY POINTS: This paper introduces a comprehensive computational model of mouse atrioventricular node (AVN) cell action potentials (APs). Our model is based on the electrophysiological data from isolated mouse AVN cells and exhibits an action potential and calcium transient that closely match the experimental records. By simulating the effects of blocking specific ionic currents, the model effectively predicts the roles of L-type Ca1.2 and Ca1.3 channels, T-type calcium channels, sodium currents (TTX-sensitive and TTX-resistant), and the funny current (I) in AVN pacemaking. The study also emphasizes the significance of other ionic currents, including I, I, I, in regulating AP characteristics and cycle length in AVN cells. The model faithfully reproduces the rate dependence of action potentials under pacing, opening the possibility of use in impulse propagation models. The population-of-models approach showed the robustness of this new AP model in simulating a wide spectrum of cellular pacemaking in AVN.
房室结(AVN)是心脏传导系统的重要组成部分。尽管它在调节心房和心室之间的电信号传输方面起着关键作用,但对于控制 AVN 功能的细胞电生理机制的全面理解仍然难以捉摸。本文提出了一个详细的小鼠 AVN 细胞动作电位(AP)的计算模型。我们的模型建立在前人的工作基础上,并引入了几个关键的改进,包括对膜电流和交换器、钙处理、细胞区室化、细胞内离子浓度的动态更新以及钙缓冲的精确表示。我们根据现有的和未发表的实验数据对模型进行了重新校准和验证。在对照条件下,我们的模型再现了 AVN AP 的实验特征,(例如,速率=175bpm,实验范围[121,191]bpm)。值得注意的是,我们的研究揭示了 L 型钙电流通过 Ca1.2 和 Ca1.3 通道在 AVN 细胞中的作用。该模型再现了几个实验观察结果,包括 Ca1.3 或 I 电流阻断时放电停止。I 电流阻断导致搏动率降低 11%。总之,这项工作提出了一个全面的小鼠 AVN 细胞 AP 的计算模型,为研究起搏机制和模拟离子电流阻断的影响提供了有价值的工具。通过整合钙处理和改进离子电流的表述,我们的模型提高了对心脏传导系统这一关键组成部分的理解,为心脏电生理学的未来发展提供了一个平台。关键点:本文提出了一个全面的小鼠房室结(AVN)细胞动作电位(AP)的计算模型。我们的模型是基于从分离的小鼠 AVN 细胞获得的电生理数据构建的,展示了与实验记录非常吻合的动作电位和钙瞬变。通过模拟阻断特定离子电流的影响,该模型有效地预测了 L 型 Ca1.2 和 Ca1.3 通道、T 型钙通道、钠电流(TTX 敏感和 TTX 抵抗)和有趣电流(I)在 AVN 起搏中的作用。该研究还强调了其他离子电流,包括 I、I、I,在调节 AVN 细胞中的 AP 特征和周期长度方面的重要性。该模型忠实地再现了起搏下动作电位的速率依赖性,为在冲动传播模型中使用开辟了可能性。基于模型群体的方法表明,这种新的 AP 模型在模拟 AVN 中广泛的细胞起搏方面具有稳健性。