Sin Gürkan, De Pauw Dirk J W, Weijers Stefan, Vanrolleghem Peter A
BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, B-9000, Ghent, Belgium.
Biotechnol Bioeng. 2008 Jun 15;100(3):516-28. doi: 10.1002/bit.21769.
An efficient approach is introduced to help automate the rather tedious manual trial and error way of model calibration currently used in activated sludge modeling practice. To this end, we have evaluated a Monte Carlo based calibration approach consisting of four steps: (i) parameter subset selection, (ii) defining parameter space, (iii) parameter sampling for Monte Carlo simulations and (iv) selecting the best Monte Carlo simulation thereby providing the calibrated parameter values. The approach was evaluated on a formerly calibrated full-scale ASM2d model for a domestic plant (located in The Netherlands), using in total 3 months of dynamic oxygen, ammonia and nitrate sensor data. The Monte Carlo calibrated model was validated successfully using ammonia, oxygen and nitrate data collected at high measurement frequency. Statistical analysis of the residuals using mean absolute error (MAE), root mean square error (RMSE) and Janus coefficient showed that the calibrated model was able to provide statistically accurate and valid predictions for ammonium, oxygen and nitrate. This shows that this pragmatic approach can perform the task of model calibration and therefore be used in practice to save the valuable time of modelers spent on this step of activated sludge modeling. The high computational demand is a downside of this approach but this can be overcome by using distributed computing. Overall we expect that the use of such systems analysis tools in the application of activated sludge models will improve the quality of model predictions and their use in decision making.
本文介绍了一种有效的方法,以帮助自动化目前活性污泥建模实践中使用的相当繁琐的手动试错模型校准方法。为此,我们评估了一种基于蒙特卡洛的校准方法,该方法包括四个步骤:(i) 参数子集选择,(ii) 定义参数空间,(iii) 蒙特卡洛模拟的参数采样,以及 (iv) 选择最佳蒙特卡洛模拟,从而提供校准后的参数值。该方法在一个先前校准的荷兰某家庭污水处理厂的全尺寸ASM2d模型上进行了评估,总共使用了3个月的动态氧气、氨和硝酸盐传感器数据。使用高测量频率收集的氨、氧气和硝酸盐数据成功验证了蒙特卡洛校准模型。使用平均绝对误差 (MAE)、均方根误差 (RMSE) 和贾纳斯系数对残差进行统计分析表明,校准后的模型能够为铵、氧气和硝酸盐提供统计上准确且有效的预测。这表明这种实用方法能够执行模型校准任务,因此可在实践中用于节省建模人员在活性污泥建模这一步骤上花费的宝贵时间。这种方法的一个缺点是计算需求高,但可以通过使用分布式计算来克服。总体而言,我们预计在活性污泥模型应用中使用此类系统分析工具将提高模型预测的质量及其在决策中的应用。