Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, DK 2800 Kgs, Lyngby, Denmark.
Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, DK-2800, Kgs, Lyngby, Denmark.
Sci Rep. 2017 Aug 24;7(1):9390. doi: 10.1038/s41598-017-09313-y.
This study presents a novel statistical approach for identifying sequenced chemical transformation pathways in combination with reaction kinetics models. The proposed method relies on sound uncertainty propagation by considering parameter ranges and associated probability distribution obtained at any given transformation pathway levels as priors for parameter estimation at any subsequent transformation levels. The method was applied to calibrate a model predicting the transformation in untreated wastewater of six biomarkers, excreted following human metabolism of heroin and codeine. The method developed was compared to parameter estimation methods commonly encountered in literature (i.e., estimation of all parameters at the same time and parameter estimation with fix values for upstream parameters) by assessing the model prediction accuracy, parameter identifiability and uncertainty analysis. Results obtained suggest that the method developed has the potential to outperform conventional approaches in terms of prediction accuracy, transformation pathway identification and parameter identifiability. This method can be used in conjunction with optimal experimental designs to effectively identify model structures and parameters. This method can also offer a platform to promote a closer interaction between analytical chemists and modellers to identify models for biochemical transformation pathways, being a prominent example for the emerging field of wastewater-based epidemiology.
本研究提出了一种新的统计方法,用于结合反应动力学模型识别测序的化学转化途径。该方法依赖于通过考虑在任何给定的转化途径水平上获得的参数范围和相关概率分布来进行可靠的不确定性传播,将其作为任何后续转化水平的参数估计的先验概率。该方法应用于校准一个模型,预测未经处理的废水中六种生物标志物的转化,这些标志物是人类代谢海洛因和可待因后排泄的。所开发的方法通过评估模型预测准确性、参数可识别性和不确定性分析,与文献中常见的参数估计方法(即同时估计所有参数和为上游参数设置固定值的参数估计)进行了比较。结果表明,该方法在预测准确性、转化途径识别和参数可识别性方面具有优于传统方法的潜力。该方法可以与最佳实验设计结合使用,以有效地识别模型结构和参数。该方法还可以为分析化学家与建模人员之间的密切互动提供一个平台,以确定用于生化转化途径的模型,这是基于废水的流行病学这一新兴领域的一个突出范例。