Suppr超能文献

细胞骨架纤维的波浪状运动及其力学原理。

Wavelike motions of cytoskeletal fibrils and their mechanics.

作者信息

Jarosch R

机构信息

Institut für Pflanzenphysiologie, Universität Salzburg, Osterreich.

出版信息

Acta Histochem Suppl. 1991;41:271-90.

PMID:1811263
Abstract

Actin filaments and microtubules can slide and translocate particles along as it is well known. Moreover, bendings, corners, regions of branching and crossbridges can move in a wavelike manner along bundles of cytoskeletal elements. This has been demonstrated by microcinematography e.g. of ringlike closed F-actin bundles ("waving polygons") in cytoplasmic drops squeezed out of characean internodial cells (Jarosch 1960) and by microtubule bundles of axostyles of Pyrsonympha (Langford and Inoué 1979), or by the rootlet fibril (costa) of Trichomonas (Amos et al. 1979). Single isolated microtubules from squid giant axons that become visible by video-enhanced interference contrast microscopy can glide on glass slides and start a kind of "fishtailing" when gliding is prevented by an obstacle (Allen et al. 1985). The described wavelike motions cannot be explained by the power-stroke or rowing-stroke model of myosin-, kinesin-, or dynein-crossbridges between filaments or microtubules--thus the problem of proper coordination and localization of the single power-strokes is unsolved. The motions can be explained and simulated in detail by macroscopic models with rotating steel helices. This indicates the existence of quickly rotating cytoskeletal elements. Two types of mechanisms are possible: 1) The propagation of angles and corners may depend on the close contact between the rotating elements of the bundle, e.g., by mutual winding and unwinding of actin-associated filaments or microtubule-associated filaments (characean polygons, axostyles of Pyrsonympha). 2) The rotating elements of the bundle form superhelices, and their rotation results in microscopic helical waves (bacterial flagella, helical filopodia, "corkscrewing" of a helical bundle). Eucaryotic flagella transform the latent helical waves of their helically shaped doublet microtubules and the central singlet helix to large helical or uniplanar bending waves by a most intricate mechanical coil-coil interaction that is demonstrated in a simplified manner by model experiments.

摘要

众所周知,肌动蛋白丝和微管能够沿着其滑动并转运颗粒。此外,弯曲、拐角、分支区域和横桥能够沿着细胞骨架元件束以波状方式移动。这已通过显微电影摄影术得到证明,例如对从轮藻节间细胞挤出的细胞质液滴中的环状封闭F - 肌动蛋白束(“波动多边形”)进行的显微电影摄影(雅罗施,1960年),以及对梨形鞭毛虫轴柱的微管束进行的显微电影摄影(兰福德和井上,1979年),或者对滴虫的小根纤维(肋)进行的显微电影摄影(阿莫斯等人,1979年)。通过视频增强干涉对比显微镜可见的来自鱿鱼巨大轴突的单个分离微管能够在载玻片上滑动,并且当被障碍物阻止滑动时会开始一种“鱼尾摆动”(艾伦等人,1985年)。所描述的波状运动无法用肌球蛋白、驱动蛋白或动力蛋白在丝或微管之间的横桥的动力冲程或划桨冲程模型来解释——因此单个动力冲程的适当协调和定位问题尚未解决。这些运动可以通过带有旋转钢螺旋的宏观模型进行详细解释和模拟。这表明存在快速旋转的细胞骨架元件。可能有两种机制:1)角度和拐角的传播可能取决于束中旋转元件之间的紧密接触,例如通过肌动蛋白相关丝或微管相关丝的相互缠绕和解缠(轮藻多边形、梨形鞭毛虫的轴柱)。2)束的旋转元件形成超螺旋,它们的旋转会产生微观螺旋波(细菌鞭毛、螺旋状丝状伪足、螺旋束的“螺旋状扭曲”)。真核生物鞭毛通过一种极其复杂的机械线圈 - 线圈相互作用将其螺旋状双联体微管和中央单螺旋的潜在螺旋波转化为大的螺旋或单平面弯曲波,模型实验以简化方式展示了这种相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验