Suppr超能文献

基于BIODEG(评估生物降解数据库)开发一种生物降解性预测模型。

Development of a predictive model for biodegradability based on BIODEG, the evaluated biodegradation data base.

作者信息

Howard P H, Boethling R S, Stiteler W, Meylan W, Beauman J

机构信息

Syracuse Research Corp., NY 13210.

出版信息

Sci Total Environ. 1991 Dec;109-110:635-41. doi: 10.1016/0048-9697(91)90216-2.

Abstract

A file of evaluated biodegradation data was used to develop a model for predicting aerobic biodegradability from chemical structure alone. Chemicals were initially divided into three groups: (i) chemicals that degrade rapidly under most environmental conditions without requiring acclimation; (ii) chemicals that degrade slowly or not at all; and (iii) chemicals that are biodegradable, but only after an acclimation period. Chemicals in the first two groups were then used to develop a model for classifying chemicals as rapidly or not rapidly biodegradable. The model is based on linear regression against 34 preselected substructures, and correctly classifies 92% (211 or 229) of the chemicals in the final training set.

摘要

利用一份经过评估的生物降解数据文件建立了一个仅根据化学结构预测需氧生物降解性的模型。化学品最初被分为三组:(i)在大多数环境条件下无需驯化就能快速降解的化学品;(ii)降解缓慢或根本不降解的化学品;(iii)可生物降解但仅在驯化期后才能降解的化学品。然后,使用前两组中的化学品建立了一个将化学品分类为快速或非快速生物可降解的模型。该模型基于对34个预选子结构的线性回归,在最终训练集中能正确分类92%(211/229)的化学品。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验