Suppr超能文献

人类眼动-头部运动过程中对目标位移的振幅变化。

Amplitude changes in response to target displacements during human eye-head movements.

作者信息

Cecala Aaron L, Freedman Edward G

机构信息

Department of Neurobiology and Anatomy, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA.

出版信息

Vision Res. 2008 Jan;48(2):149-66. doi: 10.1016/j.visres.2007.10.029. Epub 2007 Dec 21.

Abstract

Sensorimotor adaptation, the ability to adjust motor output in response to persistent changes in sensory input, is a key function of the central nervous system. Although a great deal is known about vestibulo-ocular reflex and saccadic adaptation, relatively little is known about the behavior and neural mechanisms underlying gaze adaptation when the head is free to move. In an attempt to understand the mechanisms of gaze adaptation, and constrain hypotheses concerning the locus at which changes in gaze control may be implemented, we altered the size of large, head-unrestrained gaze shifts made to visual targets by surrepetitiously moving the visual target forward (30 degrees -->60 degrees ) or backwards (60 degrees -->30 degrees ) during gaze shifts. In our 10 human subjects, after a few hundred back-step trials, gaze amplitudes were reduced by between 6 degrees and 27 degrees. Similarly, after a few hundred forward adaptation trials, our subjects increased gaze amplitude by between 0 degrees and 26 degrees. Changes in the amplitude of primary gaze shifts occurred regardless of the particular combinations of eye and head movements that made up the amplitude-altered gaze shifts. When gaze shifts were initiated with the eyes in systematically different positions relative to the head, the resulting changes in gaze, eye and head movement amplitudes were consistent with the hypothesis that gaze adaptation occurs at the level of a gaze shift command and not by altering separately the signals that produce eye and head movements.

摘要

感觉运动适应是指中枢神经系统根据感觉输入的持续变化来调整运动输出的能力,是中枢神经系统的一项关键功能。尽管人们对前庭眼反射和扫视适应已经有了很多了解,但对于头部可以自由移动时注视适应背后的行为和神经机制却知之甚少。为了理解注视适应的机制,并对可能实施注视控制变化的位点的假设进行限制,我们在注视转移过程中,通过偷偷地将视觉目标向前(30度→60度)或向后(60度→30度)移动,改变了对视觉目标进行的、头部不受约束的大注视转移的大小。在我们的10名人类受试者中,经过几百次向后步移试验后,注视幅度减小了6度至27度。同样,经过几百次向前适应试验后,我们的受试者将注视幅度增加了0度至26度。无论构成幅度改变的注视转移的眼动和头动的具体组合如何,初级注视转移的幅度都会发生变化。当注视转移开始时,眼睛相对于头部处于系统不同的位置,由此产生的注视、眼动和头动幅度的变化与以下假设一致,即注视适应发生在注视转移指令水平,而不是通过分别改变产生眼动和头动的信号来实现。

相似文献

1
Amplitude changes in response to target displacements during human eye-head movements.
Vision Res. 2008 Jan;48(2):149-66. doi: 10.1016/j.visres.2007.10.029. Epub 2007 Dec 21.
2
Head-unrestrained gaze adaptation in the rhesus macaque.
J Neurophysiol. 2009 Jan;101(1):164-83. doi: 10.1152/jn.90735.2008. Epub 2008 Nov 12.
3
Eye-head coordination during head-unrestrained gaze shifts in rhesus monkeys.
J Neurophysiol. 1997 May;77(5):2328-48. doi: 10.1152/jn.1997.77.5.2328.
4
Effects of short-term adaptation of saccadic gaze amplitude on hand-pointing movements.
Exp Brain Res. 1999 Feb;124(3):351-62. doi: 10.1007/s002210050632.
5
3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
Neuroscience. 2009 Dec 15;164(3):1284-302. doi: 10.1016/j.neuroscience.2009.08.066. Epub 2009 Sep 4.
6
Role of superior colliculus in adaptive eye-head coordination during gaze shifts.
J Neurophysiol. 2004 Oct;92(4):2168-84. doi: 10.1152/jn.00103.2004. Epub 2004 Jun 9.
7
Eye-head coordination in moderately affected Huntington's Disease patients: do head movements facilitate gaze shifts?
Exp Brain Res. 2009 Jan;192(1):97-112. doi: 10.1007/s00221-008-1559-6. Epub 2008 Sep 20.
9
Eye-head coordination in labyrinthine-defective humans.
Exp Brain Res. 1998 Oct;122(3):260-74. doi: 10.1007/s002210050514.
10
Gain adaptation of eye and head movement components of simian gaze shifts.
J Neurophysiol. 1997 Nov;78(5):2817-21. doi: 10.1152/jn.1997.78.5.2817.

引用本文的文献

2
A dataset of paired head and eye movements during visual tasks in virtual environments.
Sci Data. 2024 Dec 5;11(1):1328. doi: 10.1038/s41597-024-04184-1.
3
A Comparison of Head Movement Classification Methods.
Sensors (Basel). 2024 Feb 16;24(4):1260. doi: 10.3390/s24041260.
4
No evidence for differential saccadic adaptation in children and adults with an autism spectrum diagnosis.
Front Integr Neurosci. 2023 Oct 6;17:1232474. doi: 10.3389/fnint.2023.1232474. eCollection 2023.
5
7
Visual Space Constructed by Saccade Motor Maps.
Front Hum Neurosci. 2016 May 18;10:225. doi: 10.3389/fnhum.2016.00225. eCollection 2016.
8
Impairment of saccade adaptation in a patient with a focal thalamic lesion.
J Neurophysiol. 2015 Apr 1;113(7):2351-9. doi: 10.1152/jn.00744.2014. Epub 2015 Feb 4.
9
10
Saccade adaptation as a model of learning in voluntary movements.
Exp Brain Res. 2010 Jul;204(2):145-62. doi: 10.1007/s00221-010-2314-3. Epub 2010 Jun 11.

本文引用的文献

1
Activity changes in monkey superior colliculus during saccade adaptation.
J Neurophysiol. 2007 Jun;97(6):4096-107. doi: 10.1152/jn.01278.2006. Epub 2007 Apr 18.
3
Head-eye interactions during vertical gaze shifts made by rhesus monkeys.
Exp Brain Res. 2005 Dec;167(4):557-70. doi: 10.1007/s00221-005-0051-9. Epub 2005 Aug 13.
4
The characteristics and neuronal substrate of saccadic eye movement plasticity.
Prog Neurobiol. 2004 Jan;72(1):27-53. doi: 10.1016/j.pneurobio.2003.12.002.
5
Eye position specificity of saccadic adaptation.
Invest Ophthalmol Vis Sci. 2004 Jan;45(1):123-30. doi: 10.1167/iovs.03-0570.
6
Some characteristics of voluntary human ocular movements in the horizontal plane.
Am J Ophthalmol. 1959 Jul;48(1, Part 1):85-94. doi: 10.1016/0002-9394(59)90290-9.
7
Effect of visual error size on saccade adaptation in monkey.
J Neurophysiol. 2003 Aug;90(2):1235-44. doi: 10.1152/jn.00656.2002. Epub 2003 Apr 23.
8
Selective and delay adaptation of human saccades.
Brain Res Cogn Brain Res. 2002 Feb;13(1):41-52. doi: 10.1016/s0926-6410(01)00088-x.
9
Eye-head coordination and the variation of eye-movement accuracy with orbital eccentricity.
Exp Brain Res. 2001 Jan;136(2):200-10. doi: 10.1007/s002210000593.
10
Amplitude of human head movements associated with horizontal saccades.
Exp Brain Res. 1999 May;126(1):41-54. doi: 10.1007/s002210050715.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验