Suppr超能文献

一名患有局灶性丘脑病变患者的扫视适应受损。

Impairment of saccade adaptation in a patient with a focal thalamic lesion.

作者信息

Zimmermann E, Ostendorf F, Ploner C J, Lappe M

机构信息

Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany; Cognitive Neuroscience (INM3), Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany;

Department of Neurology, Charité-Universiätsmedizin Berlin, Berlin, Germany; and Berlin School of Mind and Brain, Humboldt Universität zu Berlin, Berlin, Germany.

出版信息

J Neurophysiol. 2015 Apr 1;113(7):2351-9. doi: 10.1152/jn.00744.2014. Epub 2015 Feb 4.

Abstract

The frequent jumps of the eyeballs-called saccades-imply the need for a constant correction of motor errors. If systematic errors are detected in saccade landing, the saccade amplitude adapts to compensate for the error. In the laboratory, saccade adaptation can be studied by displacing the saccade target. Functional selectivity of adaptation for different saccade types suggests that adaptation occurs at multiple sites in the oculomotor system. Saccade motor learning might be the result of a comparison between a prediction of the saccade landing position and its actual postsaccadic location. To investigate whether a thalamic feedback pathway might carry such a prediction signal, we studied a patient with a lesion in the posterior ventrolateral thalamic nucleus. Saccade adaptation was tested for reactive saccades, which are performed to suddenly appearing targets, and for scanning saccades, which are performed to stationary targets. For reactive saccades, we found a clear impairment in adaptation retention ipsilateral to the lesioned side and a larger-than-normal adaptation on the contralesional side. For scanning saccades, adaptation was intact on both sides and not different from the control group. Our results provide the first lesion evidence that adaptation of reactive and scanning saccades relies on distinct feedback pathways from cerebellum to cortex. They further demonstrate that saccade adaptation in humans is not restricted to the cerebellum but also involves cortical areas. The paradoxically strong adaptation for outward target steps can be explained by stronger reliance on visual targeting errors when prediction error signaling is impaired.

摘要

眼球频繁跳动(即扫视)意味着需要不断纠正运动误差。如果在扫视落点检测到系统误差,扫视幅度会进行调整以补偿该误差。在实验室中,可以通过移动扫视目标来研究扫视适应性。不同扫视类型适应性的功能选择性表明,适应性发生在动眼神经系统的多个部位。扫视运动学习可能是扫视落点位置预测与扫视后实际位置比较的结果。为了研究丘脑反馈通路是否可能携带这样的预测信号,我们研究了一名后外侧丘脑核有损伤的患者。对反应性扫视(针对突然出现的目标进行)和扫描性扫视(针对静止目标进行)的适应性进行了测试。对于反应性扫视,我们发现损伤侧同侧的适应性保留明显受损,而对侧的适应性则大于正常水平。对于扫描性扫视,两侧的适应性均正常,与对照组无差异。我们的结果首次提供了损伤证据,表明反应性扫视和扫描性扫视的适应性依赖于从小脑到皮层的不同反馈通路。它们进一步证明,人类的扫视适应性不仅限于小脑,还涉及皮层区域。向外目标步幅出现的适应性异常增强可以通过预测误差信号受损时对视觉目标误差的更强依赖来解释。

相似文献

1
Impairment of saccade adaptation in a patient with a focal thalamic lesion.
J Neurophysiol. 2015 Apr 1;113(7):2351-9. doi: 10.1152/jn.00744.2014. Epub 2015 Feb 4.
2
Mislocalization of flashed and stationary visual stimuli after adaptation of reactive and scanning saccades.
J Neurosci. 2009 Sep 2;29(35):11055-64. doi: 10.1523/JNEUROSCI.1604-09.2009.
3
Postsaccadic eye position contributes to oculomotor error estimation in saccadic adaptation.
J Neurophysiol. 2019 Nov 1;122(5):1909-1917. doi: 10.1152/jn.00095.2019. Epub 2019 Sep 18.
4
Involvement of the cerebellar thalamus in human saccade adaptation.
Eur J Neurosci. 2001 Aug;14(3):554-60. doi: 10.1046/j.0953-816x.2001.01669.x.
5
Temporal dynamics of error correction in a double step task in patients with a lesion to the lateral intra-parietal cortex.
Neuropsychologia. 2013 Dec;51(14):2988-94. doi: 10.1016/j.neuropsychologia.2013.10.010. Epub 2013 Oct 28.
6
Saccadic gain modification: visual error drives motor adaptation.
J Neurophysiol. 1998 Nov;80(5):2405-16. doi: 10.1152/jn.1998.80.5.2405.
7
8
Mislocalization of stationary and flashed bars after saccadic inward and outward adaptation of reactive saccades.
J Neurophysiol. 2012 Jun;107(11):3062-70. doi: 10.1152/jn.00877.2011. Epub 2012 Mar 21.
10
Exploring and targeting saccades dissociated by saccadic adaptation.
Brain Res. 2011 Sep 30;1415:47-55. doi: 10.1016/j.brainres.2011.07.029. Epub 2011 Jul 23.

引用本文的文献

1
Adaptation across the 2D population code explains the spatially distributive nature of motor learning.
PLoS Comput Biol. 2025 Jun 4;21(6):e1013041. doi: 10.1371/journal.pcbi.1013041. eCollection 2025 Jun.
2
A triple distinction of cerebellar function for oculomotor learning and fatigue compensation.
PLoS Comput Biol. 2023 Aug 4;19(8):e1011322. doi: 10.1371/journal.pcbi.1011322. eCollection 2023 Aug.
3
Visuomotor learning from postdictive motor error.
Elife. 2021 Mar 9;10:e64278. doi: 10.7554/eLife.64278.
5
Instability of visual error processing for sensorimotor adaptation in schizophrenia.
Eur Arch Psychiatry Clin Neurosci. 2017 Apr;267(3):237-244. doi: 10.1007/s00406-016-0716-3. Epub 2016 Jul 21.
6
Saccadic Adaptation in 10-41 Month-Old Children.
Front Hum Neurosci. 2016 May 25;10:241. doi: 10.3389/fnhum.2016.00241. eCollection 2016.
7
Visual Space Constructed by Saccade Motor Maps.
Front Hum Neurosci. 2016 May 18;10:225. doi: 10.3389/fnhum.2016.00225. eCollection 2016.
8
The Effects of Short-Lasting Anti-Saccade Training in Homonymous Hemianopia with and without Saccadic Adaptation.
Front Behav Neurosci. 2016 Jan 5;9:332. doi: 10.3389/fnbeh.2015.00332. eCollection 2015.

本文引用的文献

1
Cognitive control of movement via the cerebellar-recipient thalamus.
Front Syst Neurosci. 2013 Oct 1;7:56. doi: 10.3389/fnsys.2013.00056.
2
A role of the human thalamus in predicting the perceptual consequences of eye movements.
Front Syst Neurosci. 2013 Apr 23;7:10. doi: 10.3389/fnsys.2013.00010. eCollection 2013.
3
Saccade adaptation as a model of flexible and general motor learning.
Exp Eye Res. 2013 Sep;114:6-15. doi: 10.1016/j.exer.2013.04.001. Epub 2013 Apr 15.
5
The reference frames in saccade adaptation.
J Neurophysiol. 2013 Apr;109(7):1815-23. doi: 10.1152/jn.00743.2012. Epub 2013 Jan 16.
6
A role for the parietal cortex in sensorimotor adaptation of saccades.
Cereb Cortex. 2014 Feb;24(2):304-14. doi: 10.1093/cercor/bhs312. Epub 2012 Oct 5.
7
Using prediction errors to drive saccade adaptation: the implicit double-step task.
Exp Brain Res. 2012 Oct;222(1-2):55-64. doi: 10.1007/s00221-012-3195-4. Epub 2012 Aug 1.
8
Functional activation of the cerebral cortex related to sensorimotor adaptation of reactive and voluntary saccades.
Neuroimage. 2012 Jul 16;61(4):1100-12. doi: 10.1016/j.neuroimage.2012.03.037. Epub 2012 Mar 17.
9
The relative importance of retinal error and prediction in saccadic adaptation.
J Neurophysiol. 2012 Jun;107(12):3342-8. doi: 10.1152/jn.00746.2011. Epub 2012 Mar 21.
10
Spatiotopic visual maps revealed by saccadic adaptation in humans.
Curr Biol. 2011 Aug 23;21(16):1380-4. doi: 10.1016/j.cub.2011.06.014. Epub 2011 Jul 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验