Davis Rachel E, Resnicow Ken, Atienza Audie A, Peterson Karen E, Domas Andrea, Hunt Anne, Hurley Thomas G, Yaroch Amy L, Greene Geoffrey W, Goldman Sher Tamara, Williams Geoffrey C, Hebert James R, Nebeling Linda, Thompson Frances E, Toobert Deborah J, Elliot Diane L, DeFrancesco Carol, Costello Rebecca B
Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI 48109-2029, USA.
J Nutr. 2008 Jan;138(1):205S-211S. doi: 10.1093/jn/138.1.205S.
Despite widespread use of dietary supplements, little is known about correlates and determinants of their use. Using a diverse sample from 7 interventions participating in the Behavior Change Consortium (n = 2539), signal detection methodology (SDM) demonstrated a method for identifying subgroups with varying supplement use. An SDM model was explored with an exploratory half of the entire sample (n = 1268) and used 5 variables to predict dietary supplement use: cigarette smoking, fruit and vegetable intake, dietary fat consumption, BMI, and stage of change for physical activity. A comparison of rates of supplement use between the exploratory model groups and comparably identified groups in the reserved, confirmatory sample (n = 1271) indicates that these analyses may be generalizable. Significant indicators of any supplement use included smoking status, percentage of energy from fat, and fruit and vegetable consumption. Although higher supplement use was associated with healthy behaviors overall, many of the identified groups exhibited mixed combinations of healthy and unhealthy behaviors. The results of this study suggest that patterns of dietary supplement use are complex and support the use of SDM to identify possible population characteristics for targeted and tailored health communication interventions.
尽管膳食补充剂被广泛使用,但关于其使用的相关因素和决定因素却知之甚少。利用来自参与行为改变联盟的7项干预措施的多样化样本(n = 2539),信号检测方法(SDM)展示了一种识别具有不同补充剂使用情况的亚组的方法。使用整个样本的探索性一半(n = 1268)探索了一个SDM模型,并使用5个变量来预测膳食补充剂的使用:吸烟、水果和蔬菜摄入量、膳食脂肪消耗、BMI以及身体活动的改变阶段。探索性模型组与保留的验证性样本(n = 1271)中可比识别组之间的补充剂使用率比较表明,这些分析可能具有普遍性。任何补充剂使用的显著指标包括吸烟状况、脂肪能量百分比以及水果和蔬菜消费。尽管总体而言,较高的补充剂使用与健康行为相关,但许多已识别的组表现出健康行为和不健康行为的混合组合。这项研究的结果表明,膳食补充剂的使用模式很复杂,并支持使用SDM来识别可能的人群特征,以进行有针对性和量身定制的健康传播干预。