Schlotawa Lars, Steinfeld Robert, von Figura Kurt, Dierks Thomas, Gärtner Jutta
Department of Pediatrics and Pediatric Neurology, Georg August University Göttingen, Göttingen, Germany.
Hum Mutat. 2008 Jan;29(1):205. doi: 10.1002/humu.9515.
Multiple Sulfatase Deficiency (MSD) is a rare inborn autosomal-recessive disorder, which mainly combines clinical features of metachromatic leukodystrophy, mucopolysaccharidosis and X-linked ichthyosis. The clinical course ranges from neonatal severe to mild juvenile cases. MSD is caused by mutations in the SUMF1 gene encoding the formylglycine-generating enzyme (FGE). FGE posttranslationally activates sulfatases by generating formylglycine in their catalytic sites. We analyzed the functional consequences of missense mutations p.A177P, p.W179S, p.A279V and p.R349W with regard to FGE's subcellular localization, enzymatic activity, protein stability, intracellular retention and resulting sulfatase activities. All four mutations did not affect localization of FGE in the endoplasmic reticulum of MSD fibroblasts. However, they decreased its specific enzymatic activity to less than 1% (p.A177P and p.R349W), 3% (p.W179S) or 23% (p.A279V). Protein stability was severely decreased for p.A279V and p.R349W, and almost comparable to wild type for p.A177P and p.W179S. The patient with the mildest clinical phenotype carries the mutation p.A279V leading to decreased FGE protein stability, but high residual enzymatic activity and only slightly reduced sulfatase activities. In contrast, the most severely affected patient carries the mutation p.R349W leading to drastically decreased protein stability, very low residual enzymatic activity and considerably reduced sulfatase activities. Our functional studies provide novel insight into the molecular defect underlying MSD and reveal that both residual enzyme activity and protein stability of FGE contribute to the clinical phenotype. The application of improved functional assays to determine these two molecular parameters of FGE mutants may enable the prediction of the clinical outcome in the future.
多种硫酸酯酶缺乏症(MSD)是一种罕见的常染色体隐性遗传病,主要表现为异染性脑白质营养不良、黏多糖贮积症和X连锁鱼鳞病的临床特征。临床病程从新生儿期的严重病例到青少年期的轻度病例不等。MSD是由编码甲酰甘氨酸生成酶(FGE)的SUMF1基因突变引起的。FGE通过在其催化位点生成甲酰甘氨酸来翻译后激活硫酸酯酶。我们分析了错义突变p.A177P、p.W179S、p.A279V和p.R349W对FGE亚细胞定位、酶活性、蛋白质稳定性、细胞内滞留以及由此产生的硫酸酯酶活性的功能影响。所有这四个突变均不影响FGE在MSD成纤维细胞内质网中的定位。然而,它们将其比酶活性降低至不足1%(p.A177P和p.R349W)、3%(p.W179S)或23%(p.A279V)。p.A279V和p.R349W的蛋白质稳定性严重降低,而p.A177P和p.W179S的蛋白质稳定性几乎与野生型相当。临床表型最轻的患者携带p.A279V突变,导致FGE蛋白质稳定性降低,但仍具有较高的残余酶活性,硫酸酯酶活性仅略有降低。相比之下,受影响最严重的患者携带p.R349W突变,导致蛋白质稳定性急剧下降,残余酶活性极低,硫酸酯酶活性显著降低。我们的功能研究为MSD潜在的分子缺陷提供了新的见解,并揭示FGE的残余酶活性和蛋白质稳定性均对临床表型有影响。应用改进的功能测定方法来确定FGE突变体的这两个分子参数,可能有助于未来预测临床结果。