Suppr超能文献

Prolactin receptor gene expression in the rabbit: identification, characterization and tissue distribution of several prolactin receptor messenger RNAs encoding a unique precursor.

作者信息

Dusanter-Fourt I, Gaye P, Belair L, Pétridou B, Kelly P A, Djiane J

机构信息

Unité d'Endocrinologie Moléculaire, INRA, Jouy-en-Josas, France.

出版信息

Mol Cell Endocrinol. 1991 May;77(1-3):181-92. doi: 10.1016/0303-7207(91)90073-2.

Abstract

The expression of the prolactin (PRL) receptor gene was studied in rabbit tissues by Northern blot and S1 mapping analysis of mRNA preparations. Rabbit mammary gland contained three major (10.5, 3.4, and 2.7 kb) and one minor (6.2 kb) prolactin receptor poly(A)+ RNA transcripts all of which contain the entire coding sequence of the long form of PRL receptor. Each of these mammary mRNAs hybridized equally well with cDNA sequences encoding either the NH2 terminal, middle, or COOH terminal part of the rabbit mammary PRL receptor. The four mRNAs differed only in their 5'- and 3'-untranslated regions. The 10.5 kb mammary transcript was further shown to represent a primary transcript of nuclear origin. Among the various rabbit tissues tested, male and female adrenals, mammary gland, ovaries, and jejunum contained the highest level of prolactin receptor mRNA. The prolactin receptor gene was also expressed at moderate to weak abundance in uterus, liver, kidney, pancreas, testis and seminal vesicles. No prolactin receptor mRNA species were detected in adult muscle, lung, total brain, placental cotyledons and spleen, and in thymus from young animals. In all the rabbit tissues examined, the same four PRL receptor poly(A)+ RNA transcripts identified in the mammary gland were expressed and no additional transcript(s) were detected. Variations in the relative proportion of the 10.5 kb transcript and the two smaller transcripts were observed, while the ratio of the 3.4 and 2.7 kb mRNAs remained unchanged. These findings ask for the role of these different transcripts generated in the rabbit, all of which encode the same long form of PRL receptor precursor but have heterogenous 5'- and 3'-untranslated regions. Moreover, they suggest that the various forms of PRL receptor mRNA originate through differential splicing of a single PRL receptor gene.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验