Song Rui, Kosorok Michael R, Cai Jianwen
Department of Biostatistics, University of North Carolina at Chapel Hill, North Carolina 27599-7420, U.S.A.
Biometrics. 2008 Sep;64(3):741-750. doi: 10.1111/j.1541-0420.2007.00948.x. Epub 2007 Dec 5.
Recurrent events data are frequently encountered in clinical trials. This article develops robust covariate-adjusted log-rank statistics applied to recurrent events data with arbitrary numbers of events under independent censoring and the corresponding sample size formula. The proposed log-rank tests are robust with respect to different data-generating processes and are adjusted for predictive covariates. It reduces to the Kong and Slud (1997, Biometrika 84, 847-862) setting in the case of a single event. The sample size formula is derived based on the asymptotic normality of the covariate-adjusted log-rank statistics under certain local alternatives and a working model for baseline covariates in the recurrent event data context. When the effect size is small and the baseline covariates do not contain significant information about event times, it reduces to the same form as that of Schoenfeld (1983, Biometrics 39, 499-503) for cases of a single event or independent event times within a subject. We carry out simulations to study the control of type I error and the comparison of powers between several methods in finite samples. The proposed sample size formula is illustrated using data from an rhDNase study.
复发事件数据在临床试验中经常遇到。本文开发了稳健的协变量调整对数秩统计量,应用于在独立删失下具有任意事件数的复发事件数据以及相应的样本量公式。所提出的对数秩检验对于不同的数据生成过程具有稳健性,并针对预测协变量进行了调整。在单个事件的情况下,它简化为Kong和Slud(1997年,《生物统计学》84卷,847 - 862页)的设定。样本量公式是基于在某些局部备择假设下协变量调整对数秩统计量的渐近正态性以及复发事件数据背景下基线协变量的工作模型推导出来的。当效应量较小时且基线协变量不包含关于事件时间的显著信息时,对于单个事件或个体内独立事件时间的情况,它简化为与Schoenfeld(1983年,《生物统计学》39卷,499 - 503页)相同的形式。我们进行模拟以研究有限样本中I型错误的控制以及几种方法之间功效的比较。使用来自重组人脱氧核糖核酸酶(rhDNase)研究的数据说明了所提出的样本量公式。