Suppr超能文献

具有事件发生时间终点的分层临床试验中的异质性治疗效果。

Heterogeneous treatment effects in stratified clinical trials with time-to-event endpoints.

作者信息

Beisel Christina, Benner Axel, Kunz Christina, Kopp-Schneider Annette

机构信息

Department of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120, Heidelberg, Germany.

出版信息

Biom J. 2017 May;59(3):511-530. doi: 10.1002/bimj.201600047. Epub 2017 Mar 6.

Abstract

When analyzing clinical trials with a stratified population, homogeneity of treatment effects is a common assumption in survival analysis. However, in the context of recent developments in clinical trial design, which aim to test multiple targeted therapies in corresponding subpopulations simultaneously, the assumption that there is no treatment-by-stratum interaction seems inappropriate. It becomes an issue if the expected sample size of the strata makes it unfeasible to analyze the trial arms individually. Alternatively, one might choose as primary aim to prove efficacy of the overall (targeted) treatment strategy. When testing for the overall treatment effect, a violation of the no-interaction assumption renders it necessary to deviate from standard methods that rely on this assumption. We investigate the performance of different methods for sample size calculation and data analysis under heterogeneous treatment effects. The commonly used sample size formula by Schoenfeld is compared to another formula by Lachin and Foulkes, and to an extension of Schoenfeld's formula allowing for stratification. Beyond the widely used (stratified) Cox model, we explore the lognormal shared frailty model, and a two-step analysis approach as potential alternatives that attempt to adjust for interstrata heterogeneity. We carry out a simulation study for a trial with three strata and violations of the no-interaction assumption. The extension of Schoenfeld's formula to heterogeneous strata effects provides the most reliable sample size with respect to desired versus actual power. The two-step analysis and frailty model prove to be more robust against loss of power caused by heterogeneous treatment effects than the stratified Cox model and should be preferred in such situations.

摘要

在分析分层人群的临床试验时,治疗效果的同质性是生存分析中的一个常见假设。然而,在旨在同时在相应亚组中测试多种靶向治疗的临床试验设计的最新发展背景下,不存在治疗与分层交互作用的假设似乎并不合适。如果各层的预期样本量使得单独分析试验组不可行,这就会成为一个问题。或者,人们可能会选择将证明总体(靶向)治疗策略的疗效作为主要目标。在检验总体治疗效果时,违反无交互作用假设使得有必要偏离依赖该假设的标准方法。我们研究了在异质性治疗效果下不同样本量计算和数据分析方法的性能。将常用的Schoenfeld样本量公式与Lachin和Foulkes的另一个公式以及允许分层的Schoenfeld公式的扩展进行了比较。除了广泛使用的(分层)Cox模型外,我们还探索了对数正态共享脆弱模型以及一种两步分析方法,作为试图调整层间异质性的潜在替代方法。我们针对一个有三个层且违反无交互作用假设的试验进行了模拟研究。就期望功效与实际功效而言,Schoenfeld公式扩展到异质层效应可提供最可靠的样本量。与分层Cox模型相比,两步分析和脆弱模型在因异质性治疗效果导致功效损失方面表现得更为稳健,在这种情况下应优先选择。

相似文献

4
A sample size formula for the supremum log-rank statistic.用于最大对数秩统计量的样本量公式。
Biometrics. 2005 Mar;61(1):86-91. doi: 10.1111/j.0006-341X.2005.031206.x.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验