Suppr超能文献

配对生存数据加权秩统计量的样本量计算。

Sample size calculation for the weighted rank statistics with paired survival data.

作者信息

Jung Sin-Ho

机构信息

Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.

出版信息

Stat Med. 2008 Jul 30;27(17):3350-65. doi: 10.1002/sim.3189.

Abstract

This paper introduces a sample size calculation method for the weighted rank test statistics with paired two-sample survival data. Our sample size formula requires specification of joint survival and censoring distributions. For modelling the distribution of paired survival variables, we may use a paired exponential survival distribution that is specified by the marginal hazard rates and a measure of dependency. Also, in most trials randomizing paired subjects, the subjects of each pair are accrued and censored at the same time over an accrual period and an additional follow-up period, so that the paired subjects have a common censoring time. Under these practical settings, the design parameters include type I and type II error probabilities, marginal hazard rates under the alternative hypothesis, correlation coefficient, accrual period (or accrual rate) and follow-up period. If pilot data are available, we may estimate the survival distributions from them, but we specify the censoring distribution based on the specified accrual trend and the follow-up period planned for the new study. Through simulations, the formula is shown to provide accurate sample sizes under practical settings. Real studies are taken to demonstrate the proposed method.

摘要

本文介绍了一种用于配对双样本生存数据加权秩检验统计量的样本量计算方法。我们的样本量公式需要指定联合生存和删失分布。为了对配对生存变量的分布进行建模,我们可以使用由边际风险率和相依性度量指定的配对指数生存分布。此外,在大多数将配对受试者随机分组的试验中,每对受试者在一个入组期和一个额外的随访期内同时入组和删失,使得配对受试者有一个共同的删失时间。在这些实际设置下,设计参数包括I型和II型错误概率、备择假设下的边际风险率、相关系数、入组期(或入组率)和随访期。如果有试点数据,我们可以从中估计生存分布,但我们根据指定的入组趋势和为新研究计划的随访期来指定删失分布。通过模拟,该公式在实际设置下能提供准确的样本量。通过实际研究来证明所提出的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验