Suppr超能文献

利用脑磁图在皮质水平定位相关网络活动。

Localization of correlated network activity at the cortical level with MEG.

作者信息

Kujala Jan, Gross Joachim, Salmelin Riitta

机构信息

Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland.

出版信息

Neuroimage. 2008 Feb 15;39(4):1706-20. doi: 10.1016/j.neuroimage.2007.10.042. Epub 2007 Nov 12.

Abstract

In both hemodynamic and neurophysiological imaging methods, analysis of functionally interconnected networks has typically focused on brain areas that show strong activation in specific tasks. Alternatively, connectivity measures may be used directly to localize network nodes, independent of their level of activation. This approach requires initial cortical reference areas which may be identified based on their high level of activation, their coherence with an external reference signal, or their strong connectivity with other brain areas. Irrespective of how the nodes have been localized the mathematical complexity of the analysis methods precludes verification of the accuracy and completeness of the network structure by direct comparison with the measured data. Therefore, it is critical to understand how the choices of parameters and procedures used in the analysis affect the network identification. Here, using simulated and measured magnetoencephalography (MEG) data, and Dynamic Imaging of Coherent Sources (DICS) for connectivity analysis, we quantify the veracity of network detection at the individual and group level as a function of relevant parameter choices. Using simulations, we demonstrate that coupling measures enable accurate identification of the network structure even without external reference signals, and illustrate the applicability of this approach to real data. We show that a valid estimate of interindividual variability is critical for reliable group-level analysis. Although this study focuses on application of DICS to MEG data, many issues considered here, especially those regarding individual vs. group-level analysis, are likely to be relevant for other neuroimaging methods and analysis approaches as well.

摘要

在血流动力学和神经生理学成像方法中,对功能互联网络的分析通常集中于在特定任务中显示出强烈激活的脑区。另外,连通性测量可直接用于定位网络节点,而不考虑其激活水平。这种方法需要初始的皮质参考区域,这些区域可根据其高激活水平、与外部参考信号的一致性或与其他脑区的强连通性来确定。无论节点是如何定位的,分析方法的数学复杂性使得无法通过与测量数据的直接比较来验证网络结构的准确性和完整性。因此,了解分析中使用的参数和程序的选择如何影响网络识别至关重要。在这里,我们使用模拟和实测的脑磁图(MEG)数据,以及用于连通性分析的相干源动态成像(DICS),将个体和群体水平上网络检测的准确性量化为相关参数选择的函数。通过模拟,我们证明即使没有外部参考信号,耦合测量也能准确识别网络结构,并说明了这种方法对实际数据的适用性。我们表明,对个体间变异性的有效估计对于可靠的群体水平分析至关重要。尽管本研究侧重于DICS在MEG数据中的应用,但这里考虑的许多问题,尤其是那些关于个体与群体水平分析的问题,可能也与其他神经成像方法和分析方法相关。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验