Suppr超能文献

大肠杆菌2,4-二烯酰辅酶A还原酶活性位点上的两个不同质子供体负责形成不同的产物。

Two distinct proton donors at the active site of Escherichia coli 2,4-dienoyl-CoA reductase are responsible for the formation of different products.

作者信息

Tu Xi, Hubbard Paul A, Kim Jung-Ja P, Schulz Horst

机构信息

Department of Chemistry, City College, and Graduate School of the City University of New York, New York, New York 10031, USA.

出版信息

Biochemistry. 2008 Jan 29;47(4):1167-75. doi: 10.1021/bi701235t. Epub 2008 Jan 3.

Abstract

NADPH-dependent 2,4-dienoyl-CoA reductase (DCR) is one of the auxiliary enzymes required for the beta-oxidation of unsaturated fatty acids. Mutants of Escherichia coli DCR were generated by site-directed mutagenesis to explore the molecular mechanism of this enzyme. The Tyr166Phe mutant, which was expected to be inactive due to the loss of its putative proton donor residue, exhibited 27% of the wild-type activity. However, the product of the reduction was 3-enoyl-CoA instead of 2-enoyl-CoA, the normal product. Glu164 seems to function as proton donor in the Tyr166Phe mutant, because the Tyr166Phe/ Glu164Gln double mutant was inactive whereas the Glu164Ala mutant exhibited low but significant activity. His252 is important for the efficient operation of Tyr166 because a His252Ala mutation by itself reduced the activity of DCR by 3 orders of magnitude, whereas the Tyr166Phe/His252Ala double mutation exhibited 4.4% of the wild-type activity. This data supports a mechanism that has Tyr166 with the assistance of His252 acting as proton donor in the wild-type enzyme to produce 2-enoyl-CoA, whereas Glu164 serves as the proton donor in the absence of Tyr166 to yield 3-enoyl-CoA. A Cys337Ala mutation, which resulted in the loss of most of the iron and acid-labile sulfur, decreased the reductase activity more than 1000-fold. This observation agrees with the proposed operation of an intramolecular electron transport chain that is essential for the effective catalysis of E. coli DCR.

摘要

NADPH 依赖的 2,4-二烯脂酰辅酶 A 还原酶(DCR)是不饱和脂肪酸β氧化所需的辅助酶之一。通过定点诱变产生了大肠杆菌 DCR 的突变体,以探索该酶的分子机制。酪氨酸 166 苯丙氨酸(Tyr166Phe)突变体由于其假定的质子供体残基缺失,预计无活性,但仍表现出野生型活性的 27%。然而,还原产物是 3-烯脂酰辅酶 A,而不是正常产物 2-烯脂酰辅酶 A。在 Tyr166Phe 突变体中,谷氨酸 164(Glu164)似乎起到了质子供体的作用,因为 Tyr166Phe/Glu164Gln 双突变体无活性,而 Glu164Ala 突变体表现出低但显著的活性。组氨酸 252(His252)对 Tyr166 的有效作用很重要,因为 His252Ala 突变本身使 DCR 的活性降低了 3 个数量级,而 Tyr166Phe/His252Ala 双突变体表现出野生型活性的 4.4%。这些数据支持了一种机制,即在野生型酶中,Tyr166 在 His252 的协助下作为质子供体产生 2-烯脂酰辅酶 A,而在没有 Tyr166 的情况下,Glu164 作为质子供体产生 3-烯脂酰辅酶 A。半胱氨酸 337 丙氨酸(Cys337Ala)突变导致大部分铁和酸不稳定硫的丢失,使还原酶活性降低了 1000 倍以上。这一观察结果与所提出的分子内电子传递链的运作一致,该电子传递链对大肠杆菌 DCR 的有效催化至关重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验