Roe Anna W, Chen Li M
Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA.
ILAR J. 2008;49(1):116-23. doi: 10.1093/ilar.49.1.116.
One of the most widely used functional brain mapping tools is blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the "funneling illusion," it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal.
最广泛使用的脑功能图谱工具之一是血氧水平依赖性功能磁共振成像(BOLD-fMRI)。这种方法有助于人们对人类大脑不同区域的功能作用有新的认识。然而,其在高空间(亚毫米)分辨率下绘制大脑皮层的能力仍不清楚。其他方法,如单单元和多单元电生理学以及内在信号光学成像,已经揭示了感觉地形图和皮质柱状激活的亚毫米分辨率。然而,它们要么受到空间尺度的限制(电生理学仅表征局部神经元群),要么无法监测大脑深部结构(即埋藏在脑沟中的皮质区域或皮质下结构)。一种能够在高空间分辨率下监测大脑所有区域的方法将是理想的。这种能力将为研究例如大脑皮质柱网络如何与行为相关或产生行为打开大门。在本文中,我们证明,在没有造影剂的情况下,在9.4特斯拉的磁场强度下,BOLD-fMRI可以揭示麻醉松鼠猴体感皮层中毫米大小的数字表征地形图。此外,通过绘制“漏斗错觉”,甚至可以检测到皮层激活中毫米以下的位移。我们的数据表明,在高磁场强度下,正BOLD信号可用于揭示大脑活动的高空间分辨率图谱,这一发现削弱了先前关于正BOLD信号最终空间特异性的观念。