Suppr超能文献

蛋白质魔角旋转核磁共振谱中的各向同性化学位移。

Isotropic chemical shifts in magic-angle spinning NMR spectra of proteins.

作者信息

Wylie Benjamin J, Sperling Lindsay J, Rienstra Chad M

机构信息

Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801, USA.

出版信息

Phys Chem Chem Phys. 2008 Jan 21;10(3):405-13. doi: 10.1039/b710736f. Epub 2007 Nov 5.

Abstract

Here we examine the effect of magic-angle spinning (MAS) rate upon lineshape and observed peak position for backbone carbonyl (C') peaks in NMR spectra of uniformly-(13)C,15N-labeled (U-(13)C,15N) solid proteins. 2D N-C' spectra of U-(13)C,15N microcrystalline protein GB1 were acquired at six MAS rates, and the site-resolved C' lineshapes were analyzed by numerical simulations and comparison to spectra from a sparsely labeled sample (derived from 1,3-(13)C-glycerol). Spectra of the U-(13)C,15N sample demonstrate large variations in the signal-to-noise ratio and peak positions, which are absent in spectra of the sparsely labeled sample, in which most 13C' sites do not possess a directly bonded 13CA. These effects therefore are a consequence of rotational resonance, which is a well-known phenomenon. Yet the magnitude of this effect pertaining to chemical shift assignment has not previously been examined. To quantify these effects in high-resolution protein spectra, we performed exact numerical two- and four-spin simulations of the C' lineshapes, which reproduced the experimentally observed features. Observed peak positions differ from the isotropic shift by up to 1.0 ppm, even for MAS rates relatively far (a few ppm) from rotational resonance. Although under these circumstances the correct isotropic chemical shift values may be determined through simulation, systematic errors are minimized when the MAS rate is equivalent to approximately 85 ppm for 13C. This moderate MAS condition simplifies spectral assignment and enables data sets from different labeling patterns and spinning rates to be used most efficiently for structure determination.

摘要

在此,我们研究了魔角旋转(MAS)速率对均匀(¹³C,¹⁵N)标记(U-¹³C,¹⁵N)固体蛋白质核磁共振谱中主链羰基(C′)峰的线形和观测峰位置的影响。在六个MAS速率下采集了U-¹³C,¹⁵N微晶蛋白GB1的二维N-C′谱,并通过数值模拟以及与来自稀疏标记样品(源自1,3-¹³C-甘油)的谱进行比较,对位点分辨的C′线形进行了分析。U-¹³C,¹⁵N样品的谱显示出信噪比和峰位置的巨大变化,而在稀疏标记样品的谱中则不存在这些变化,在该稀疏标记样品中,大多数¹³C′位点没有直接键合的¹³CA。因此,这些效应是旋转共振的结果,这是一个众所周知的现象。然而,此前尚未研究与化学位移归属相关的这种效应的大小。为了在高分辨率蛋白质谱中量化这些效应,我们对C′线形进行了精确的数值二自旋和四自旋模拟,重现了实验观测到的特征。即使对于离旋转共振相对较远(几ppm)的MAS速率,观测到的峰位置与各向同性位移的差异也高达1.0 ppm。尽管在这些情况下可以通过模拟确定正确的各向同性化学位移值,但当¹³C的MAS速率约为85 ppm时,系统误差最小。这种适度的MAS条件简化了谱的归属,并能使来自不同标记模式和旋转速率的数据集最有效地用于结构测定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验