Chilton Lisa, Loutzenhiser Kathy, Morales Ezequiel, Breaks Jennifer, Kargacin Gary J, Loutzenhiser Rodger
Department of Pharmacology and Therapeutics, University of Calgary Faculty of Medicine, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada.
J Am Soc Nephrol. 2008 Jan;19(1):69-76. doi: 10.1681/ASN.2007010039.
The afferent and efferent arterioles regulate the inflow and outflow resistance of the glomerulus, acting in concert to control the glomerular capillary pressure and glomerular filtration rate. The myocytes of these two vessels are remarkably different, especially regarding electromechanical coupling. This study investigated the expression and function of inward rectifier K(+) channels in these two vessels using perfused hydronephrotic rat kidneys and arterioles and myocytes isolated from normal rat kidneys. In afferent arterioles pre-constricted with angiotensin II, elevating K(+) from 5 to 15 mmol/L induced hyperpolarization (-27 +/- 2 to 41 +/- 3 mV) and vasodilation (6.6 +/- 0.9 to 13.1 +/- 0.6 microm). This manipulation also attenuated angiotensin II-induced Ca(2+) signaling, an effect blocked by 100 micromol/LBa(2+). By contrast, elevating K(+) did not alter angiotensin II-induced Ca2(+) signaling or vasoconstriction in efferent arterioles, even though a significant hyperpolarization was observed (from -30 +/- 1 to 37 +/- 3 mV, P = 0.003). Both vessels expressed mRNA for Kir2.1 and exhibited anti-Kir2.1 antibody labeling.Patch-clamp measurements revealed prominent inwardly rectifying and Ba(2+)-sensitive currents in afferent and efferent arteriolar myocytes. Our findings indicate that both arterioles express an inward rectifier K(+) current, but that modulation of this current alters responsiveness of only the a different arteriole. The expression of Kir in the efferent arteriole, a resistance vessel whose tone is not affected by membrane potential, is intriguing and may suggest a novel function of this channel in the renal microcirculation.
入球小动脉和出球小动脉调节肾小球的流入和流出阻力,协同作用以控制肾小球毛细血管压力和肾小球滤过率。这两种血管的肌细胞显著不同,尤其是在电机械耦联方面。本研究使用灌注积水大鼠肾脏以及从正常大鼠肾脏分离的小动脉和肌细胞,研究了这两种血管中内向整流钾通道的表达和功能。在预先用血管紧张素II收缩的入球小动脉中,将[K⁺]₀从5 mmol/L提高到15 mmol/L会诱导超极化(从-27±2 mV到-41±3 mV)和血管舒张(从6.6±0.9 µm到13.1±0.6 µm)。这种操作还减弱了血管紧张素II诱导的Ca²⁺信号传导,该效应被100 µmol/L Ba²⁺阻断。相比之下,提高[K⁺]₀不会改变血管紧张素II诱导的出球小动脉中的Ca²⁺信号传导或血管收缩,尽管观察到了显著的超极化(从-30±1 mV到-37±3 mV,P = 0.003)。两种血管均表达Kir2.1的mRNA并表现出抗Kir2.1抗体标记。膜片钳测量显示入球和出球小动脉肌细胞中存在明显的内向整流和Ba²⁺敏感电流。我们的研究结果表明,两种小动脉均表达内向整流钾电流,但该电流的调节仅改变一种不同小动脉的反应性。出球小动脉(一种其张力不受膜电位影响的阻力血管)中Kir的表达很有趣,可能暗示了该通道在肾微循环中的新功能。