Suppr超能文献

模板序列和二级结构对DNA模板反应性的影响。

Effects of template sequence and secondary structure on DNA-templated reactivity.

作者信息

Snyder Thomas M, Tse Brian N, Liu David R

机构信息

Howard Hughes Medical Institute and the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA.

出版信息

J Am Chem Soc. 2008 Jan 30;130(4):1392-401. doi: 10.1021/ja076780u. Epub 2008 Jan 8.

Abstract

DNA-templated organic synthesis enables the translation, selection, and amplification of DNA sequences encoding synthetic small-molecule libraries. As the size of DNA-templated libraries increases, the possibility of forming intramolecularly base-paired structures within templates that impede templated reactions increases as well. To achieve uniform reactivity across many template sequences and to computationally predict and remove any problematic sequences from DNA-templated libraries, we have systematically examined the effects of template sequence and secondary structure on DNA-templated reactivity. By testing a series of template sequences computationally designed to contain different degrees of internal secondary structure, we observed that high levels of predicted secondary structure involving the reagent binding site within a DNA template interfere with reagent hybridization and impair reactivity, as expected. Unexpectedly, we also discovered that templates containing virtually no predicted internal secondary structure also exhibit poor reaction efficiencies. Further studies revealed that a modest degree of internal secondary structure is required to maximize effective molarities between reactants, possibly by compacting intervening template nucleotides that separate the hybridized reactants. Therefore, ideal sequences for DNA-templated synthesis lie between two undesirable extremes of too much or too little internal secondary structure. The relationship between effective molarity and intervening nucleic acid secondary structure described in this work may also apply to nucleic acid sequences in living systems that separate interacting biological molecules.

摘要

DNA模板化有机合成能够对编码合成小分子文库的DNA序列进行翻译、筛选和扩增。随着DNA模板化文库规模的增大,模板内形成阻碍模板反应的分子内碱基配对结构的可能性也随之增加。为了在众多模板序列中实现均匀的反应活性,并通过计算预测和去除DNA模板化文库中任何有问题的序列,我们系统地研究了模板序列和二级结构对DNA模板化反应活性的影响。通过测试一系列经计算设计以包含不同程度内部二级结构的模板序列,我们观察到,正如预期的那样,DNA模板内涉及试剂结合位点的高水平预测二级结构会干扰试剂杂交并损害反应活性。出乎意料的是,我们还发现几乎没有预测内部二级结构的模板也表现出较差的反应效率。进一步的研究表明,可能需要适度的内部二级结构来最大化反应物之间的有效摩尔浓度,这或许是通过压缩分隔杂交反应物的中间模板核苷酸来实现的。因此,DNA模板化合成的理想序列介于内部二级结构过多或过少这两个不理想的极端情况之间。本文所述的有效摩尔浓度与中间核酸二级结构之间的关系也可能适用于分隔相互作用生物分子的生物系统中的核酸序列。

相似文献

1
Effects of template sequence and secondary structure on DNA-templated reactivity.
J Am Chem Soc. 2008 Jan 30;130(4):1392-401. doi: 10.1021/ja076780u. Epub 2008 Jan 8.
2
The Evolution of DNA-Templated Synthesis as a Tool for Materials Discovery.
Acc Chem Res. 2017 Oct 17;50(10):2496-2509. doi: 10.1021/acs.accounts.7b00280. Epub 2017 Sep 15.
3
DNA-templated organic synthesis and selection of a library of macrocycles.
Science. 2004 Sep 10;305(5690):1601-5. doi: 10.1126/science.1102629. Epub 2004 Aug 19.
4
DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules.
Angew Chem Int Ed Engl. 2004 Sep 20;43(37):4848-70. doi: 10.1002/anie.200400656.
5
Stereoselectivity in DNA-templated organic synthesis and its origins.
J Am Chem Soc. 2003 Aug 27;125(34):10188-9. doi: 10.1021/ja035379e.
6
Translation of DNA into synthetic N-acyloxazolidines.
J Am Chem Soc. 2004 Apr 28;126(16):5090-2. doi: 10.1021/ja049666+.
7
Multistep small-molecule synthesis programmed by DNA templates.
J Am Chem Soc. 2002 Sep 4;124(35):10304-6. doi: 10.1021/ja027307d.
8
Translation of DNA into a library of 13,000 synthetic small-molecule macrocycles suitable for in vitro selection.
J Am Chem Soc. 2008 Nov 19;130(46):15611-26. doi: 10.1021/ja805649f. Epub 2008 Oct 29.
10
Chemical self-replication of palindromic duplex DNA.
Nature. 1994 May 19;369(6477):218-21. doi: 10.1038/369218a0.

引用本文的文献

1
Exploring the Genetic and Functional Diversity of Survival Factor RagAB.
Int J Mol Sci. 2025 Jan 26;26(3):1073. doi: 10.3390/ijms26031073.
2
Deciphering RNA splicing logic with interpretable machine learning.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2221165120. doi: 10.1073/pnas.2221165120. Epub 2023 Oct 5.
3
DNA-Scaffolded Synergistic Catalysis.
J Am Chem Soc. 2021 Dec 22;143(50):21402-21409. doi: 10.1021/jacs.1c10757. Epub 2021 Dec 13.
5
The impact of poly-A microsatellite heterologies in meiotic recombination.
Life Sci Alliance. 2019 Apr 25;2(2). doi: 10.26508/lsa.201900364. Print 2019 Apr.
6
Second-generation DNA-templated macrocycle libraries for the discovery of bioactive small molecules.
Nat Chem. 2018 Jul;10(7):704-714. doi: 10.1038/s41557-018-0033-8. Epub 2018 Apr 2.
8
Site-specific inter-strand cross-links of DNA duplexes.
Chem Sci. 2013 Mar 1;4(3):1319-1329. doi: 10.1039/C2SC21775A.
10
Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker.
Nat Nanotechnol. 2010 Nov;5(11):778-82. doi: 10.1038/nnano.2010.190. Epub 2010 Oct 10.

本文引用的文献

1
Expanding the reaction scope of DNA-templated synthesis.
Angew Chem Int Ed Engl. 2002 May 17;41(10):1796-800. doi: 10.1002/1521-3773(20020517)41:10<1796::aid-anie1796>3.0.co;2-z.
2
The physical and chemical properties of nucleic acids.
Annu Rev Biochem. 1967;36:407-48. doi: 10.1146/annurev.bi.36.070167.002203.
3
RNA maps reveal new RNA classes and a possible function for pervasive transcription.
Science. 2007 Jun 8;316(5830):1484-8. doi: 10.1126/science.1138341. Epub 2007 May 17.
4
5
Design of siRNAs producing unstructured guide-RNAs results in improved RNA interference efficiency.
Nat Biotechnol. 2005 Nov;23(11):1440-4. doi: 10.1038/nbt1151. Epub 2005 Oct 30.
6
Small-molecule diversification from iterated branching reaction pathways enabled by DNA-templated synthesis.
Angew Chem Int Ed Engl. 2005 Dec 1;44(45):7383-6. doi: 10.1002/anie.200502899.
7
Ordered multistep synthesis in a single solution directed by DNA templates.
Angew Chem Int Ed Engl. 2005 Dec 1;44(45):7379-82. doi: 10.1002/anie.200502879.
8
Riboswitches as versatile gene control elements.
Curr Opin Struct Biol. 2005 Jun;15(3):342-8. doi: 10.1016/j.sbi.2005.05.003.
9
Reaction discovery enabled by DNA-templated synthesis and in vitro selection.
Nature. 2004 Sep 30;431(7008):545-9. doi: 10.1038/nature02920.
10
DNA-templated organic synthesis: nature's strategy for controlling chemical reactivity applied to synthetic molecules.
Angew Chem Int Ed Engl. 2004 Sep 20;43(37):4848-70. doi: 10.1002/anie.200400656.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验