Tse Brian N, Snyder Thomas M, Shen Yinghua, Liu David R
Howard Hughes Medical Institute and the Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, USA.
J Am Chem Soc. 2008 Nov 19;130(46):15611-26. doi: 10.1021/ja805649f. Epub 2008 Oct 29.
DNA-templated organic synthesis enables the translation, selection, and amplification of DNA sequences encoding synthetic small-molecule libraries. Previously we described the DNA-templated multistep synthesis and model in vitro selection of a pilot library of 65 macrocycles. In this work, we report several key developments that enable the DNA-templated synthesis of much larger (>10,000-membered) small-molecule libraries. We developed and validated a capping-based approach to DNA-templated library synthesis that increases final product yields, simplifies the structure and preparation of reagents, and reduces the number of required manipulations. To expand the size and structural diversity of the macrocycle library, we augmented the number of building blocks in each DNA-templated step from 4 to 12, selected 8 different starting scaffolds which result in 4 macrocycle ring sizes and 2 building-block orientations, and confirmed the ability of the 36 building blocks and 8 scaffolds to generate DNA-templated macrocycle products. We computationally generated and experimentally validated an expanded set of codons sufficient to support 1728 combinations of step 1, step 2, and step 3 building blocks. Finally, we developed new high-resolution LC/MS analysis methods to assess the quality of large DNA-templated small-molecule libraries. Integrating these four developments, we executed the translation of 13,824 DNA templates into their corresponding small-molecule macrocycles. Analysis of the resulting libraries is consistent with excellent (>90%) representation of desired macrocycle products and a stringent test of sequence specificity suggests a high degree of sequence fidelity during translation. The quality and structural diversity of this expanded DNA-templated library provides a rich starting point for the discovery of functional synthetic small-molecule macrocycles.
DNA模板化有机合成能够对编码合成小分子文库的DNA序列进行翻译、筛选和扩增。此前我们描述了DNA模板化的多步合成以及对一个包含65个大环的先导文库进行的体外模型筛选。在这项工作中,我们报告了几项关键进展,这些进展使得能够进行DNA模板化合成更大规模(超过10000个成员)的小分子文库。我们开发并验证了一种基于封端的DNA模板化文库合成方法,该方法提高了最终产物的产率,简化了试剂的结构和制备过程,并减少了所需的操作步骤。为了扩大大环文库的规模和结构多样性,我们将每个DNA模板化步骤中的构建模块数量从4个增加到12个,选择了8种不同的起始支架,这些支架可产生4种大环环大小和2种构建模块方向,并证实了36种构建模块和8种支架生成DNA模板化大环产物的能力。我们通过计算生成并通过实验验证了一组扩展的密码子,足以支持步骤1、步骤2和步骤3构建模块的1728种组合。最后,我们开发了新的高分辨率液相色谱/质谱分析方法来评估大型DNA模板化小分子文库的质量。整合这四项进展,我们将13824个DNA模板翻译成了相应的小分子大环。对所得文库的分析表明,所需大环产物的代表性极佳(>90%),并且对序列特异性的严格测试表明在翻译过程中具有高度的序列保真度。这个扩展的DNA模板化文库的质量和结构多样性为发现功能性合成小分子大环提供了丰富的起点。