Shaw James E, Epand Raquel F, Hsu Jenny C Y, Mo Gary C H, Epand Richard M, Yip Christopher M
Department of Biochemistry, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, Canada M5S 3E1.
J Struct Biol. 2008 Apr;162(1):121-38. doi: 10.1016/j.jsb.2007.11.003. Epub 2007 Nov 17.
Our understanding of how antimicrobial and cell-penetrating peptides exert their action at cell membranes would benefit greatly from direct visualization of their modes of action and possible targets within the cell membrane. We previously described how the cationic antimicrobial peptide, indolicidin, interacted with mixed zwitterionic planar lipid bilayers as a function of both peptide concentration and lipid composition [Shaw, J.E. et al., 2006. J. Struct. Biol. 154 (1), 42-58]. In the present report, in situ atomic force microscopy was used to characterize the interactions between three families of cationic peptides: (1) tryptophan-rich antimicrobial peptides--indolicidin and two of its analogues, (2) an amphiphilic alpha-helical membranolytic peptide--melittin, and (3) an arginine-rich cell-penetrating peptide--Tat with phase-separated planar bilayers containing 1,2-dioleoyl-sn-glycerol-3-phosphocholine (DOPC)/1,2-distearoyl-sn-glycerol-3-phosphocholine (DSPC) or DOPC/N-stearoyl-D-erythro-sphingosylphosphorylcholine (SM)/cholesterol. We found that these cationic peptides all induced remodelling of the model membranes in a concentration, and family-dependent manner. At low peptide concentration, these cationic peptides, despite their different biological roles, all appeared to reduce the interfacial line tension at the domain boundary between the liquid-ordered and liquid-disordered domains. Only at high peptide concentration was the membrane remodelling induced by these peptides morphologically distinct among the three families. While the transformation caused by indolicidin and its analogues were structurally similar, the concentration required to initiate the transformation was strongly dependent on the hydrophobicity of the peptide. Our use of lipid compositions with no net charge minimized the electrostatic interactions between the cationic peptides and the model supported bilayers. These results suggest that peptides within the same functional family have a common mechanism of action, and that membrane insertion of short cationic peptides at low peptide concentration may also alter membrane structure through a common mechanism regardless of the peptide's origin.
我们对抗菌肽和细胞穿透肽如何在细胞膜上发挥作用的理解,将极大地受益于对其作用方式以及细胞膜内可能靶点的直接可视化研究。我们之前描述了阳离子抗菌肽吲哚霉素(indolicidin)如何与混合两性离子平面脂质双层相互作用,这是肽浓度和脂质组成的函数[Shaw, J.E.等人,2006年。《结构生物学杂志》154(1),42 - 58]。在本报告中,原位原子力显微镜被用于表征三类阳离子肽之间的相互作用:(1)富含色氨酸的抗菌肽——吲哚霉素及其两种类似物,(2)两亲性α - 螺旋膜溶解肽——蜂毒肽(melittin),以及(3)富含精氨酸的细胞穿透肽——Tat,与含有1,2 - 二油酰 - sn - 甘油 - 3 - 磷酸胆碱(DOPC)/1,2 - 二硬脂酰 - sn - 甘油 - 3 - 磷酸胆碱(DSPC)或DOPC/N - 硬脂酰 - D - 赤藓糖基鞘氨醇磷酸胆碱(SM)/胆固醇的相分离平面双层膜。我们发现这些阳离子肽均以浓度和家族依赖的方式诱导模型膜重塑。在低肽浓度下,这些阳离子肽尽管具有不同的生物学作用,但似乎都降低了液晶态和液晶无序态之间区域边界的界面线张力。只有在高肽浓度下,这些肽诱导的膜重塑在这三类肽之间在形态上才有所不同。虽然吲哚霉素及其类似物引起的转变在结构上相似,但引发转变所需的浓度强烈依赖于肽的疏水性。我们使用净电荷为零的脂质组成,使阳离子肽与模型支撑双层膜之间的静电相互作用最小化。这些结果表明,同一功能家族内的肽具有共同的作用机制,并且低肽浓度下短阳离子肽的膜插入可能也通过共同机制改变膜结构,而与肽的来源无关。