Pavlovic Elizabeth, Lai Rebecca Y, Wu Ting Ting, Ferguson Brian S, Sun Ren, Plaxco Kevin W, Soh H T
Department of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93111, USA.
Langmuir. 2008 Feb 5;24(3):1102-7. doi: 10.1021/la702681c. Epub 2008 Jan 9.
Electrochemical biosensors pose an attractive solution for point-of-care diagnostics because they require minimal instrumentation and they are scalable and readily integrated with microelectronics. The integration of electrochemical biosensors with microscale devices has, however, proven to be challenging due to significant incompatibilities among biomolecular stability, operation conditions of electrochemical sensors, and microfabrication techniques. Toward a solution to this problem, we have demonstrated here an electrochemical array architecture that supports the following processes in situ, within a self-enclosed microfluidic device: (a) electrode cleaning and preparation, (b) electrochemical addressing, patterning, and immobilization of sensing biomolecules at selected sensor pixels, (c) sequence-specific electrochemical detection from multiple pixels, and (d) regeneration of the sensing pixels. The architecture we have developed is general, and it should be applicable to a wide range of biosensing schemes that utilize gold-thiol self-assembled monolayer chemistry. As a proof-of-principle, we demonstrate the detection and differentiation of polymerase chain reaction (PCR) amplicons diagnostic of human (H1N1) and avian (H5N1) influenza.
电化学生物传感器为即时诊断提供了一种有吸引力的解决方案,因为它们所需的仪器设备最少,并且具有可扩展性,易于与微电子技术集成。然而,由于生物分子稳定性、电化学传感器的操作条件和微制造技术之间存在显著不兼容性,将电化学生物传感器与微尺度设备集成已被证明具有挑战性。为了解决这个问题,我们在此展示了一种电化学阵列架构,该架构可在一个自封闭的微流控设备中原位支持以下过程:(a) 电极清洗和制备;(b) 电化学寻址、图案化以及在选定的传感器像素处固定传感生物分子;(c) 从多个像素进行序列特异性电化学检测;(d) 传感像素的再生。我们开发的这种架构具有通用性,应该适用于广泛的利用金-硫醇自组装单分子层化学的生物传感方案。作为原理验证,我们展示了对诊断人类(H1N1)和禽流感(H5N1)的聚合酶链反应(PCR)扩增子的检测和区分。