Suppr超能文献

用于多种DNA序列电化学图案化和检测的微流控装置架构

Microfluidic device architecture for electrochemical patterning and detection of multiple DNA sequences.

作者信息

Pavlovic Elizabeth, Lai Rebecca Y, Wu Ting Ting, Ferguson Brian S, Sun Ren, Plaxco Kevin W, Soh H T

机构信息

Department of Materials, Chemistry and Biochemistry, University of California, Santa Barbara, California 93111, USA.

出版信息

Langmuir. 2008 Feb 5;24(3):1102-7. doi: 10.1021/la702681c. Epub 2008 Jan 9.

Abstract

Electrochemical biosensors pose an attractive solution for point-of-care diagnostics because they require minimal instrumentation and they are scalable and readily integrated with microelectronics. The integration of electrochemical biosensors with microscale devices has, however, proven to be challenging due to significant incompatibilities among biomolecular stability, operation conditions of electrochemical sensors, and microfabrication techniques. Toward a solution to this problem, we have demonstrated here an electrochemical array architecture that supports the following processes in situ, within a self-enclosed microfluidic device: (a) electrode cleaning and preparation, (b) electrochemical addressing, patterning, and immobilization of sensing biomolecules at selected sensor pixels, (c) sequence-specific electrochemical detection from multiple pixels, and (d) regeneration of the sensing pixels. The architecture we have developed is general, and it should be applicable to a wide range of biosensing schemes that utilize gold-thiol self-assembled monolayer chemistry. As a proof-of-principle, we demonstrate the detection and differentiation of polymerase chain reaction (PCR) amplicons diagnostic of human (H1N1) and avian (H5N1) influenza.

摘要

电化学生物传感器为即时诊断提供了一种有吸引力的解决方案,因为它们所需的仪器设备最少,并且具有可扩展性,易于与微电子技术集成。然而,由于生物分子稳定性、电化学传感器的操作条件和微制造技术之间存在显著不兼容性,将电化学生物传感器与微尺度设备集成已被证明具有挑战性。为了解决这个问题,我们在此展示了一种电化学阵列架构,该架构可在一个自封闭的微流控设备中原位支持以下过程:(a) 电极清洗和制备;(b) 电化学寻址、图案化以及在选定的传感器像素处固定传感生物分子;(c) 从多个像素进行序列特异性电化学检测;(d) 传感像素的再生。我们开发的这种架构具有通用性,应该适用于广泛的利用金-硫醇自组装单分子层化学的生物传感方案。作为原理验证,我们展示了对诊断人类(H1N1)和禽流感(H5N1)的聚合酶链反应(PCR)扩增子的检测和区分。

相似文献

1
Microfluidic device architecture for electrochemical patterning and detection of multiple DNA sequences.
Langmuir. 2008 Feb 5;24(3):1102-7. doi: 10.1021/la702681c. Epub 2008 Jan 9.
2
A highly sensitive electrochemical genosensor based on Co-porphyrin-labelled DNA.
Chem Commun (Camb). 2014 Apr 25;50(32):4196-9. doi: 10.1039/c4cc00172a.
4
Multiplexed detection and differentiation of the DNA strains for influenza A (H1N1 2009) using a silicon-based microfluidic system.
Biosens Bioelectron. 2011 Jan 15;26(5):2006-11. doi: 10.1016/j.bios.2010.08.076. Epub 2010 Sep 9.
5
An FET-type charge sensor for highly sensitive detection of DNA sequence.
Biosens Bioelectron. 2004 Jul 30;20(1):69-74. doi: 10.1016/j.bios.2004.01.025.
6
Integrated electrochemical microsystems for genetic detection of pathogens at the point of care.
Acc Chem Res. 2015 Apr 21;48(4):911-20. doi: 10.1021/ar500456w. Epub 2015 Mar 18.
7
Genetic analysis of H1N1 influenza virus from throat swab samples in a microfluidic system for point-of-care diagnostics.
J Am Chem Soc. 2011 Jun 15;133(23):9129-35. doi: 10.1021/ja203981w. Epub 2011 May 24.
8
A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis.
Biosens Bioelectron. 2015 Feb 15;64:579-85. doi: 10.1016/j.bios.2014.09.069. Epub 2014 Oct 11.
9
Electrochemical microfluidic biosensor for the detection of nucleic acid sequences.
Lab Chip. 2006 Mar;6(3):414-21. doi: 10.1039/b513239h. Epub 2006 Jan 24.
10
Electrochemical microfluidic biosensor for nucleic acid detection with integrated minipotentiostat.
Biosens Bioelectron. 2006 Jun 15;21(12):2217-23. doi: 10.1016/j.bios.2005.11.017. Epub 2006 Jan 18.

引用本文的文献

1
Recent progress and perspectives of continuous in vivo testing device.
Mater Today Bio. 2022 Jul 8;16:100341. doi: 10.1016/j.mtbio.2022.100341. eCollection 2022 Dec.
2
Fabrication of Aptamer-Modified Paper Electrochemical Devices for On-Site Biosensing.
Angew Chem Int Ed Engl. 2021 Feb 8;60(6):2993-3000. doi: 10.1002/anie.202008231. Epub 2020 Dec 10.
3
Rapid, Affordable, and Point-of-Care Water Monitoring Via a Microfluidic DNA Sensor and a Mobile Interface for Global Health.
IEEE J Transl Eng Health Med. 2013 Sep 16;1:3700207. doi: 10.1109/JTEHM.2013.2281819. eCollection 2013.
5
Point-of-care (POC) devices by means of advanced MEMS.
Talanta. 2015 Dec 1;145:55-9. doi: 10.1016/j.talanta.2015.04.032. Epub 2015 Apr 23.
7
Real-time, aptamer-based tracking of circulating therapeutic agents in living animals.
Sci Transl Med. 2013 Nov 27;5(213):213ra165. doi: 10.1126/scitranslmed.3007095.
8
Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice.
Appl Environ Microbiol. 2013 Apr;79(7):2302-11. doi: 10.1128/AEM.03882-12. Epub 2013 Jan 25.
9
Microfluidics-based lab-on-chip systems in DNA-based biosensing: an overview.
Sensors (Basel). 2011;11(6):5754-68. doi: 10.3390/s110605754. Epub 2011 May 27.

本文引用的文献

1
Electrochemical detection for microscale analytical systems: a review.
Talanta. 2002 Feb 11;56(2):223-31. doi: 10.1016/s0039-9140(01)00592-6.
3
Label-free electrochemical detection of DNA in blood serum via target-induced resolution of an electrode-bound DNA pseudoknot.
J Am Chem Soc. 2007 Oct 3;129(39):11896-7. doi: 10.1021/ja074218y. Epub 2007 Sep 12.
4
Effect of molecular crowding on the response of an electrochemical DNA sensor.
Langmuir. 2007 Jun 5;23(12):6827-34. doi: 10.1021/la700328r. Epub 2007 May 9.
5
Electrochemically addressable functionalization and parallel readout of a DNA biosensor array.
Anal Chem. 2007 Apr 1;79(7):2695-702. doi: 10.1021/ac061678l. Epub 2007 Feb 28.
8
Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex.
Proc Natl Acad Sci U S A. 2006 Nov 7;103(45):16677-80. doi: 10.1073/pnas.0607693103. Epub 2006 Oct 25.
10
Point-of-care diagnostics: will the hurdles be overcome this time?
Expert Rev Med Devices. 2006 Jul;3(4):421-6. doi: 10.1586/17434440.3.4.421.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验